

TR0114 (v1.1) May 20, 2005 1

VHDL Language Reference

Summary
Technical Reference
TR0114 (v1.1) May 20, 2005

This comprehensive reference provides a detailed overview
of the VHDL language and describes each of the standard
VHDL keywords (reserved words).

VHDL is a programming language that has been designed and optimized for describing the behavior of
digital systems.

VHDL has many features appropriate for describing the behavior of electronic components ranging
from simple logic gates to complete microprocessors and custom chips. Features of VHDL allow
electrical aspects of circuit behavior (such as rise and fall times of signals, delays through gates, and
functional operation) to be precisely described. The resulting VHDL simulation models can then be
used as building blocks in larger circuits (using schematics, block diagrams or system-level VHDL
descriptions) for the purpose of simulation.

VHDL is also a general-purpose programming language: just as high-level programming languages
allow complex design concepts to be expressed as computer programs, VHDL allows the behavior of
complex electronic circuits to be captured into a design system for automatic circuit synthesis or for
system simulation. Like Pascal, C and C++, VHDL includes features useful for structured design
techniques, and offers a rich set of control and data representation features. Unlike these other
programming languages, VHDL provides features allowing concurrent events to be described. This is
important because the hardware described using VHDL is inherently concurrent in its operation.

One of the most important applications of VHDL is to capture the performance specification for a
circuit, in the form of what is commonly referred to as a test bench. Test benches are VHDL
descriptions of circuit stimuli and corresponding expected outputs that verify the behavior of a circuit
over time. Test benches should be an integral part of any VHDL project and should be created in
tandem with other descriptions of the circuit.

A standard language
One of the most compelling reasons for you to become experienced with and knowledgeable in VHDL
is its adoption as a standard in the electronic design community. Using a standard language such as
VHDL virtually guarantees that you will not have to throw away and recapture design concepts simply
because the design entry method you have chosen is not supported in a newer generation of design
tools. Using a standard language also means that you are more likely to be able to take advantage of
the most up-to-date design tools and that you will have access to a knowledge base of thousands of
other engineers, many of whom are solving problems similar to your own.

VHDL Language Reference

2 TR0114 (v1.1) May 20, 2005

Entities and Architectures
Every VHDL design description consists of at least one entity/architecture pair. (In VHDL jargon, this
combination of an entity and its corresponding architecture is sometimes referred to as a design
entity.) In a large design, you will typically write many entity/architecture pairs and connect them
together to form a complete circuit.
An entity declaration describes the circuit as it appears from the “outside” - from the perspective of its
input and output interfaces. If you are familiar with schematics, you might think of the entity declaration
as being analogous to a block symbol on a schematic.

The second part of a minimal VHDL design description is the architecture declaration. Before
simulation or synthesis can proceed, every referenced entity in a VHDL design description must be
bound with a corresponding architecture. The architecture describes the actual function – or contents –
of the entity to which it is bound. Using the schematic as a metaphor, you can think of the architecture
as being roughly analogous to a lower-level schematic referenced by the higher-level functional block
symbol.

Entity declaration
An entity declaration provides the complete interface for a circuit. Using the information provided in an
entity declaration (the names, data types and direction of each port), you have all the information you
need to connect that portion of a circuit into other, higher-level circuits, or to develop input stimuli (in
the form of a test bench) for verification purposes. The actual operation of the circuit, however, is not
included in the entity declaration.

Let's take a closer look at the entity declaration for this simple design description:

entity compare is

 port(A, B: in bit_vector(0 to 7);

 EQ: out bit);

end compare;

The entity declaration includes a name, compare, and a port statement defining all the inputs and
outputs of the entity. The port list includes definitions of three ports: A, B, and EQ. Each of these three
ports is given a direction (either in, out or inout), and a type (in this case either bit_vector(0 to
7), which specifies an 8-bit array, or bit, which represents a single-bit value).

There are many different data types available in VHDL. To simplify things in this introductory circuit,
we're going to stick with the simplest data types in VHDL, which are bit and bit_vector.

Architecture declaration and body
The second part of a minimal VHDL source file is the architecture declaration. Every entity declaration
you reference in your design must be accompanied by at least one corresponding architecture (we'll
discuss why you might have more than one architecture in a moment).

Here's the architecture declaration for the comparator circuit:

architecture compare1 of compare is
begin
 EQ <= '1' when (A = B) else '0';

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 3

end compare1;

The architecture declaration begins with a unique name, compare1, followed by the name of the entity
to which the architecture is bound, in this case compare. Within the architecture declaration (between
the begin and end keywords) is found the actual functional description of the comparator. There are
many ways to describe combinational logic functions in VHDL; the method used in this simple design
description is a type of concurrent statement known as a conditional assignment. This assignment
specifies that the value of the output (EQ) will be assigned a value of '1' when A and B are equal, and
a value of '0' when they differ.

This single concurrent assignment demonstrates the simplest form of a VHDL architecture. As you will
see, there are many different types of concurrent statements available in VHDL, allowing you to
describe very complex architectures. Hierarchy and subprogram features of the language allow you to
include lower-level components, subroutines and functions in your architectures, and a powerful
statement known as a process allows you to describe complex registered sequential logic as well.

Data Types
Like a high-level software programming language, VHDL allows data to be represented in terms of
high-level data types. A data type is an abstract representation of stored data, such as you might
encounter in software languages. These data types might represent individual wires in a circuit, or they
might represent collections of wires.

The preceding description of the comparator circuit used the data types bit and bit_vector for its inputs
and outputs. The bit data type has only two possible values: '1' or '0'. (A bit_vector is simply an array of
bits.) Every data type in VHDL has a defined set of values, and a defined set of valid operations. Type
checking is strict, so it is not possible, for example, to directly assign the value of an integer data type
to a bit_vector data type. (There are ways to get around this restriction, using what are called type
conversion functions.

The chart below summarizes the fundamental data types available in VHDL.

Data Type Values Example

Bit '1', '0' Q <= '1';

Bit_vector (array of bits) DataOut <= “00010101”;

Boolean True, False EQ <= True;

Integer -2, -1, 0, 1, 2, 3, 4 . . . Count <= Count + 2;

Real 1.0, -1.0E5 V1 = V2 / 5.3

Time 1 us, 7 ns, 100 ps Q <= '1' after 6 ns;

Character 'a', 'b', '2, '$', etc. CharData <= 'X';

String (Array of characters) Msg <= “MEM: “ & Addr

VHDL Language Reference

4 TR0114 (v1.1) May 20, 2005

Notes
The VHDL symbol <= is an assignment operator that assigns the value(s) on its right to the variable on
its left.

Design Units
One concept unique to VHDL (when compared to software programming languages and to its main
rival, Verilog) is the concept of a design unit. Design units in VHDL (which may also be referred to as
library units) are segments of VHDL code that can be compiled separately and stored in a library.
There are actually five types of design units in VHDL; entities, architectures, packages, package
bodies, and configurations. Entities and architectures are the only two design units that you must
have in any VHDL design description. Packages and configurations are optional.

Entities
A VHDL entity is a statement (indicated by the entity keyword) that defines the external specification of
a circuit or sub-circuit. The minimum VHDL design description must include at least one entity and one
corresponding architecture.

When you write an entity declaration, you must provide a unique name for that entity and a port list
defining the input and output ports of the circuit. Each port in the port list must be given a name,
direction (or mode, in VHDL jargon) and a type. Optionally, you may also include a special type of
parameter list (called a generic list) that allows you to pass additional information into an entity.

An example of an entity declaration is given below:

entity fulladder is
 port (X: in bit;
 Y: in bit;
 Cin: in bit;
 Cout: out bit;
 Sum: out bit);
end fulladder;

Architectures
A VHDL architecture declaration is a statement (beginning with the architecture keyword) that
describes the underlying function and/or structure of a circuit. Each architecture in your design must be
associated (or bound) by name with one entity in the design.

VHDL allows you to create more than one alternate architecture for each entity. This feature is
particularly useful for simulation and for project team environments in which the design of the system
interfaces (expressed as entities) is performed by a different engineer than the lower-level architectural
description of each component circuit, or when you simply want to experiment with different methods of
description.

An architecture declaration consists of zero or more declarations (of items such as intermediate
signals, components that will be referenced in the architecture, local functions and procedures, and
constants) followed by a begin statement, a series of concurrent statements, and an end statement, as
illustrated by the following example:

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 5

architecture concurrent of fulladder is
begin
 Sum <= X xor Y xor Cin;
 Cout <= (X and Y) or (X and Cin) or (Y and Cin);
end concurrent;

Packages and package bodies
A VHDL package declaration is identified by the package keyword, and is used to collect commonly-
used declarations for use globally among different design units. You can think of a package as a
common storage area, one used to store such things as type declarations, constants, and global
subprograms. Items defined within a package can be made visible to any other design unit in the
complete VHDL design, and they can be compiled into libraries for later re-use.

A package can consist of two basic parts: a package declaration and an optional package body.
Package declarations can contain the following types of statements:

• Type and subtype declarations

• Constant declarations

• Global signal declarations

• Function and procedure declarations

• Attribute specifications

• File declarations

• Component declarations

• Alias declarations

• Disconnect specifications

• Use clauses

Items appearing within a package declaration can be made visible to other design units through the
use of a use statement.

If the package contains declarations of subprograms (functions or procedures) or defines one or more
deferred constants (constants whose value is not immediately given), then a package body is required
in addition to the package declaration. A package body (which is specified using the package body
keyword combination) must have the same name as its corresponding package declaration, but it can
be located anywhere in the design, in the same or a different source file.

The relationship between a package and package body is somewhat akin to the relationship between
an entity and its corresponding architecture. (There may be only one package body written for each
package declaration, however.) While the package declaration provides the information needed to use
the items defined within it (the parameter list for a global procedure, or the name of a defined type or
subtype), the actual behavior of such things as procedures and functions must be specified within
package bodies.

An example of a package is given below:

package conversion is

 function to_vector (size: integer; num: integer) return
std_logic_vector;

VHDL Language Reference

6 TR0114 (v1.1) May 20, 2005

end conversion;

package body conversion is

 function to_vector(size: integer; num: integer) return std_logic_vector
is

 variable ret: std_logic_vector (1 to size);

 variable a: integer;

 begin

 a := num;
 for i in size downto 1 loop

 if ((a mod 2) = 1) then

 ret(i) := '1';
 else

 ret(i) := '0';
 end if;

 a := a / 2;
 end loop;

 return ret;

 end to_vector;

end conversion;

Configurations
The final type of design unit available in VHDL is called a configuration declaration. You can think of a
configuration declaration as being roughly analogous to a parts list for your design. A configuration
declaration (identified with the configuration keyword) specifies which architectures are to be bound
to which entities, and it allows you to change how components are connected in your design
description at the time of simulation. (Configurations are not generally used for synthesis, and may not
be supported in the synthesis tool that you will use.)

Configuration declarations are always optional, no matter how complex a design description you
create. In the absence of a configuration declaration, the VHDL standard specifies a set of rules that
provide you with a default configuration. For example, in the case where you have provided more than
one architecture for an entity, the last architecture compiled will take precedence and will be bound to
the entity.

A simple example of a configuration is given below:

configuration this_build of rcomp is

 for structure

 for COMP1: compare use entity work.compare(compare1);

 for ROT1: rotate use entity work.rotate(rotate1);

 end for;

end this_build;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 7

Levels of abstraction
VHDL supports many possible styles of design description. These styles differ primarily in how closely
they relate to the underlying hardware. When talking about the different styles of VHDL, the differing
levels of abstraction possible using the language are being considered - behavior, dataflow, and
structure.

Suppose the performance specifications for a given project are: “the compressed data coming out of
the DSP chip needs to be analyzed and stored within 70 nanoseconds of the strobe signal being
asserted...” This human language specification must be refined into a description that can actually be
simulated. A test bench written in combination with a sequential description is one such expression of
the design. These are all points in the behavior level of abstraction.

After this initial simulation, the design must be further refined until the description is something a VHDL
synthesis tool can digest. Synthesis is a process of translating an abstract concept into a less-abstract
form. The highest level of abstraction accepted by today's synthesis tools is the dataflow level.

The structure level of abstraction comes into play when little chunks of circuitry are to be connected
together to form bigger circuits. (If the little chunks being connected are actually quite large chunks,
then the result is commonly called a block diagram.) Physical information is the most basic level of all
and is outside the scope of VHDL. This level involves actually specifying the interconnects of
transistors on a chip, placing and routing macrocells within a gate array or FPGA, etc.

As an example of these three levels of abstraction, it is possible to describe a complex controller circuit
in a number of ways. At the lowest level of abstraction (the structural level), you could use VHDL's
hierarchy features to connect a sequence of predefined logic gates and flip-flips to form the complete
circuit. To describe this same circuit at a dataflow level of abstraction, you might describe the
combinational logic portion of the controller (its input decoding and transition logic) using higher-level
Boolean logic functions and then feed the output of that logic into a set of registers that match the
registers available in some target technology. At the behavioral level of abstraction, you might ignore
the target technology (and the requirements of synthesis tools) entirely and instead describe how the
controller operates over time in response to various types of stimulus.

Behavior
The highest level of abstraction supported in VHDL is called the behavioral level of abstraction. When
creating a behavioral description of a circuit, you will describe your circuit in terms of its operation over
time. The concept of time is the critical distinction between behavioral descriptions of circuits and
lower-level descriptions (specifically descriptions created at the dataflow level of abstraction).

Examples of behavioral forms of representation might include state diagrams, timing diagrams and
algorithmic descriptions.

In a behavioral description, the concept of time may be expressed precisely, with actual delays
between related events (such as the propagation delays within gates and on wires), or it may simply be
an ordering of operations that are expressed sequentially (such as in a functional description of a flip-
flop). When you are writing VHDL for input to synthesis tools, you may use behavioral statements in
VHDL to imply that there are registers in your circuit. It is unlikely, however, that your synthesis tool will
be capable of creating precisely the same behavior in actual circuitry as you have defined in the
language. (Synthesis tools today ignore detailed timing specifications, leaving the actual timing results

VHDL Language Reference

8 TR0114 (v1.1) May 20, 2005

at the mercy of the target device technology.) It is also unlikely that your synthesis tool will be capable
of accepting and processing a very wide range of behavioral description styles.

If you are familiar with software programming, writing behavior-level VHDL will not seem like anything
new. Just like a programming language, you will be writing one or more small programs that operate
sequentially and communicate with one another through their interfaces. The only difference between
behavior-level VHDL and a software programming language is the underlying execution platform: in the
case of software, it is some operating system running on a CPU; in the case of VHDL, it is the
simulator and/or the synthesized hardware.

Dataflow
In the dataflow level of abstraction, you describe your circuit in terms of how data moves through the
system. At the heart of most digital systems today are registers, so in the dataflow level of abstraction
you describe how information is passed between registers in the circuit. You will probably describe the
combinational logic portion of your circuit at a relatively high level (and let a synthesis tool figure out the
detailed implementation in logic gates), but you will likely be quite specific about the placement and
operation of registers in the complete circuit.
The dataflow level of abstraction is often called register transfer logic, or RTL. This level of
abstraction is an intermediate level that allows the drudgery of combinational logic to be simplified
(and, presumably, taken care of by logic synthesis tools) while the more important parts of the circuit,
the registers, are more completely specified.

There are some drawbacks to using a dataflow method of design in VHDL. First, there are no built-in
registers in VHDL; the language was designed to be general-purpose, and the emphasis was placed
by VHDL's designers on its behavioral aspects. If you are going to write VHDL at the dataflow level of
abstraction, you must first create (or obtain) behavioral descriptions of the register elements you will be
using in your design. These elements must be provided in the form of components (using VHDL's
hierarchy features) or in the form of subprograms (functions or procedures).

But for hardware designers, it can be difficult to relate the sequential descriptions and operation of
behavioral VHDL with the hardware being described (or modeled). For this reason, many VHDL users,
particularly those who are using VHDL as an input to synthesis, prefer to stick with levels of abstraction
that are easier to relate to actual hardware devices (such as logic gates and flip-flops). These users are
often more comfortable using the dataflow level of abstraction.

Structure
The third level of abstraction, structure, is used to describe a circuit in terms of its components.
Structure can be used to create a very low-level description of a circuit (such as a transistor-level
description) or a very high-level description (such as a block diagram).

In a gate-level description of a circuit, for example, components such as basic logic gates and flip-flops
might be connected in some logical structure to create the circuit. This is what is often called a netlist.
For a higher-level circuit – one in which the components being connected are larger functional blocks –
structure might simply be used to segment the design description into manageable parts.

Structure-level VHDL features, such as components and configurations, are very useful for managing
complexity. The use of components can dramatically improve your ability to re-use elements of your
designs, and they can make it possible to work using a top-down design approach.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 9

To give an example of how a structural description of a circuit relates to higher levels of abstraction,
consider the design of a simple 5-bit counter. To describe such a counter using traditional design
methods, you might connect five T flip-flops with some simple decode logic.

The following VHDL design description represents this design in the form of a netlist of connected
components:

entity andgate is

 port(A,B,C,D: in bit := '1'; Y: out bit);

end andgate;

architecture gate of andgate is

begin

 Y <= A and B and C and D;

end gate;

entity tff is

 port(Rst,Clk,T: in bit; Q: out bit);

end tff;

architecture behavior of tff is

begin

 process(Rst,Clk)

 variable Qtmp: bit;

 begin

 if (Rst = '1') then

 Qtmp := '0';
 elsif Clk = '1' and Clk'event then

 if T = '1' then

 Qtmp := not Qtmp;

 end if;

 end if;

 Q <= Qtmp;
 end process;

end behavior;

entity TCOUNT is

 port (Rst,Clk: in bit;

 Count: out bit_vector(4 downto 0));

end TCOUNT;

architecture STRUCTURE of TCOUNT is

 component tff

 port(Rst,Clk,T: in bit; Q: out bit);

VHDL Language Reference

10 TR0114 (v1.1) May 20, 2005

 end component;

 component andgate

 port(A,B,C,D: in bit := '1'; Y: out bit);

 end component;

 constant VCC: bit := '1';

 signal T,Q: bit_vector(4 downto 0);

begin

 T(0) <= VCC;
 T0: tff port map (Rst=>Rst, Clk=>Clk, T=>T(0), Q=>Q(0));

 T(1) <= Q(0);
 T1: tff port map (Rst=>Rst, Clk=>Clk, T=>T(1), Q=>Q(1));

 A1: andgate port map(A=>Q(0), B=>Q(1), Y=>T(2));

 T2: tff port map (Rst=>Rst, Clk=>Clk, T=>T(2), Q=>Q(2));

 A2: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), Y=>T(3));

 T3: tff port map (Rst=>Rst, Clk=>Clk, T=>T(3), Q=>Q(3));

 A3: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), D=>Q(3), Y=>T(4));

 T4: tff port map (Rst=>Rst, Clk=>Clk, T=>T(4), Q=>Q(4));

 Count <= Q;
end STRUCTURE;

This structural representation seems a straightforward way to describe a 5-bit counter, and it is
certainly easy to relate to hardware since just about any imaginable implementation technology will
have the features necessary to implement the circuit. For larger circuits, however, such descriptions
quickly become impractical.

Notes
In some formal discussions of synthesis, four levels of abstraction are described; behavior, RTL, gate-
level and layout. The three levels of abstraction presented here provide the most useful distinctions for
today's synthesis user.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 11

Objects, Data Types and Operators
VHDL includes a number of language elements, collectively called objects, that can be used to
represent and store data in the system being described. The three basic types of objects that you will
use when entering a design description for synthesis or creating functional tests (in the form of a test
bench) are signals, variables and constants. Each object that you declare has a specific data type
(such as bit or integer) and a unique set of possible values.

The values that an object can take will depend on the definition of the type used for that object. For
example, an object of type bit has only two possible values, '0' and '1', while an object of type real has
many possible values (floating point numbers within a precision and range defined by the VHDL
standard and by the specific simulator you are using).

When an explicit value is specified (such as when you are assigning a value to a signal or variable, or
when you are passing a value as a parameter to a subprogram), that value is represented in the form
of a literal.

Using Signals
Signals are objects that are used to connect concurrent elements (such as components, processes and
concurrent assignments), similar to the way that wires are used to connect components on a circuit
board or in a schematic. Signals can be declared globally in an external package or locally within an
architecture, block or other declarative region.
To declare a signal, you write a signal statement such as the following:

architecture arch1 of my_design is

 signal Q: std_logic;

begin

 . . .
end arch1;

In this simple example, the signal Q is declared within the declaration section of the arch1
architecture. At a minimum, a signal declaration must include the name of the signal (in this case Q)
and its type (in this case the standard type std_logic). If more than one signal of the same type is
required, multiple signal names can be specified in a single declaration:

architecture arch2 of my_design is

 signal Bus1, Bus2: std_logic_vector(7 downto 0);

begin

 . . .
end declare;

In the first example above, the declaration of Q was entered in the declaration area of architecture
arch1. Thus, the signal Q will be visible anywhere within the arch1 design unit, but it will not be visible
within other design units. To make the signal Q visible to the entire design (a global signal), you would
have to move the declaration into an external package, as shown below:

VHDL Language Reference

12 TR0114 (v1.1) May 20, 2005

package my_package is

 signal Q: std_logic; -- Global signal

end my_package;

. . .
use work.my_package.Q; -- Make Q visible to the architecture

architecture arch1 of my_design is

begin

 . . .
end arch1;

In this example, the declaration for Q has been moved to an external package, and a use statement
has been specified, making the contents of that package visible to the subsequent architecture.

Signal initialization
In addition to creating one or more signals and assigning them a type, the signal declaration can also
be used to assign an initial value to the signal, as shown below:

signal BusA: std_logic_vector(15 downto 0) := (others => 'Z');

This particular initialization uses a special kind of assignment, called an aggregate assignment, to
assign all signals of the array BusA to an initial value of 'Z'. (The 'Z' value is defined in the IEEE
1164 standard as a high-impedance state.)

Initialization values are useful for simulation modeling, but they are not recommended for design
descriptions that will be processed by synthesis tools. Synthesis tools typically ignore initialization
values because they cannot assume that the target hardware will power up in a known state.

Using signals
You will use signals in VHDL in two primary ways. First, if you want signals to carry information
between different functional parts of your design, such as between two components, you will probably
use them in a way similar to the following:

library ieee;

use ieee.std_logic_1164.all;

entity shiftcomp is port(Clk, Rst, Load: in std_logic;

 Init: in std_logic_vector(0 to 7);

 Test: in std_logic_vector(0 to 7);

 Limit: out std_logic);

end shiftcomp;

architecture structure of shiftcomp is

 component compare

 port(A, B: in std_logic_vector(0 to 7); EQ: out bit);

 end component;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 13

 component shift

 port(Clk, Rst, Load: in std_logic;

 Data: in std_logic_vector(0 to 7);

 Q: out std_logic_vector(0 to 7));

 end component;

 signal Q: std_logic_vector(0 to 7);

begin

 COMP1: compare port map (Q, Test, Limit);

 SHIFT1: shift port map (Clk, Rst, Load, Init, Q);

end structure;

This example declares the signal Q within the architecture, then uses Q to connect the two components
COMP1 and SHIFT1 together.

A second way of using signals is demonstrated by the following example in which signals are used
within logic expressions and are assigned values directly (in this case within a process):

library ieee;

use ieee.std_logic_1164.all;

entity synch is

 port (Rst, Clk, Grant, nSelect: in std_logic;

 Request: out std_logic);

end synch;

architecture dataflow of synch is

 signal Q1, Q2, Q3, D3: std_logic;

begin

 dff: process (Rst, Clk)

 begin

 if Rst = '1' then

 Q1 <= '0';

 Q2 <= '0';

 Q3 <= '0';
 elsif Clk = '1' and Clk'event then

 Q1 <= Grant;
 Q2 <= Select;
 Q3 <= D3;
 end if;
 end process;
 D3 <= Q1 and Q3 or Q2;
 Request <= Q3;
end dataflow;

VHDL Language Reference

14 TR0114 (v1.1) May 20, 2005

This example (which is a simplified synchronizer circuit) uses three signals, Q1, Q2 and Q3, to
represent register elements, with the signal D3 being used as an intermediate signal representing a
combinational logic function connecting the outputs of registers Q1, Q2 and Q3 to the input of Q3. The
final assignment assigns the Q3 register output to the Request output port. The register behavior is
encapsulated into a process, dff, simplifying the concurrent statements that follow.

It is important to note that there is no significance to the order in which these concurrent statements
occur. Like wires drawn between symbols on a schematic, signals assigned and used within a VHDL
architecture are independent of each other and are not position dependent.

Using Variables
Variables are objects used to store intermediate values between sequential VHDL statements.
Variables are only allowed in processes, procedures and functions, and they are always local to those
functions.

Variables in VHDL are much like variables in a conventional software programming language. They
immediately take on and store the value assigned to them, and they can be used to simplify a complex
calculation or sequence of logical operations.

The following example is a simplified synchronizer circuit:

library ieee;

use ieee.std_logic_1164.all;

entity synch is

 port (Rst, Clk, Grant, nSelect: std_ulogic;

 Request: std_ulogic);
end synch;

architecture behavior of synch is

begin

 process(Rst, Clk)

 variable Q1, Q2, Q3: std_ulogic;

 begin

 if Rst = '1' then -- Async reset

 Q1 := '0'; Q2 := '0'; Q3 := '0';
 elsif (Clk = '1' and Clk'event) then

 Q1 := Grant;

 Q2 := Select;
 Q3 := Q1 and Q3 or Q2;

 end if;

 Request <= Q3;
 end process;

end behavior;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 15

In this example, a single process is used to describe the behavior of the three commonly-clocked
register elements. The connections between the three registers are represented by variables that are
local to the process, and the result (the output of register Q3) is then assigned to the output port
Request. This design will probably not work as intended, because the registered behavior of Q1 and
Q2 will be “short circuited” by the fact that variables were used.

Because variables do not always result in registers being generated within otherwise clocked
processes, you must be very careful when using them.

Notes
The 1076-1993 language standard adds a new type of global variable that has visibility between
different processes and subprograms. Global variables are not generally supported in synthesis tools.

Using Constants and Literals
Constants
Constants are objects that are assigned a value once, when declared, and do not change their value
during simulation. Constants are useful for creating more readable design descriptions and they make
it easier to change the design at a later time. The following code fragment provides a few examples of
constant declarations:

architecture sample1 of consts is

 constant SRAM: bit_vector(15 downto 0) := X"F0F0";

 constant PORT: string := "This is a string";

 constant error_flag: boolean := True;

begin

 . . .
 process(. . .)

 constant CountLimit: integer := 205;

 begin

 . . .
 end process;

end sample1;

Constant declarations can be located in any declaration area in your design description. If you want to
create constants that are global to your design description, then you will place the constant
declarations into external packages. If a constant will be used only within one segment of your design,
you can place the constant declaration within the architecture, block, process or subprogram that
requires it.

Literals
Explicit data values that are assigned to objects or used within expressions are called literals. Literals
represent specific values, but they do not always have an explicit type. (For example, the literal '1'
could represent either a bit data type or a character.) Literals do, however, fall into a few general
categories:

VHDL Language Reference

16 TR0114 (v1.1) May 20, 2005

Character literals

Character literals are 1-character ASCII values that are enclosed in single-quotes, such as the values
'1', 'Z', '$' and ':'. The data type of the object being assigned one of these values (or the type implied by
the expression in which the value is being used) will dictate whether a given character literal is valid.
The literal value '$', for example, is a valid literal when assigned to a character type object, but it is not
valid when assigned to a std_logic or bit data type.

String literals

String literals are collections of one or more ASCII characters enclosed in double-quote characters.
String literals may contain any combination of ASCII characters, and they may be assigned to
appropriately sized arrays of single-character data types (such as bit_vector or std_logic_vector) or to
objects of the built-in type string.

Bit string literals

Bit string literals are special forms of string literals that are used to represent binary, octal, or
hexadecimal numeric data values.
When representing a binary number, a bit string literal must be preceded by the special character 'B',
and it may contain only the characters '0' and '1'. For example, to represent a decimal value of 36 using
a binary format bit string literal, you would write B"100100".

When representing an octal number, the bit string literal must include only the characters '0' through '7',
and it must be preceded by the special character 'O', as in O"446".

When representing a hexadecimal value, the bit string literal must be preceded by the special character
'X', and it may include only the characters '0' through '9' and the characters 'A' through 'F', as in
X"B295". (Lower-case characters are also allowed, so 'a' through 'f' are also valid.)

The underscore character '_' may also be used in bit string literals as needed to improve readability.
The following are some examples of bit string literals representing a variety of numeric values:
B"0111_1101" (decimal value 125)

O"654" (decimal value 428)

O"146_231" (decimal value 52,377)

X"C300" (decimal value 49,920)

Numeric literals

There are two basic forms of numeric literals in VHDL, integer literals and real literals.

Integer literals are entered as you would expect, as decimal numbers preceded by an optional negation
character ('-'). The range of integers supported is dependent on your particular simulator or synthesis
tool, but the VHDL standard does specify a minimum range of -2,147,483,647 to +2,147,483,647 (32
bits of precision, including the sign bit).

Real literals are entered using an extended form that requires a decimal point. For large numbers,
scientific notation is also allowed using the character 'E', where the number to the left of the 'E'
represents the mantissa of the real number, while the number to the right of the 'E' represents the
exponent. The following are some examples of real literals:

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 17

5.0

-12.9

1.6E10

1.2E-20

The minimum and maximum values of real numbers are defined by the simulation tool vendor, but they
must be at least in the range of -1.0E38 to +1.0E38 (as defined by the standard). Numeric literals may
not include commas, but they may include underscore characters (“_”) to improve readability, as in:

1_276_801 -- integer value 1,276,801

Type checking is strict in VHDL, and this includes the use of numeric literals. It is not possible, for
example, to assign an integer literal of 9 to an object of type real. (You must instead enter the value as
9.0.)

Based literals

Based literals are another form of integer or real values, but they are written in non-decimal form. To
specify a based literal, you precede the literal with a base specification (such as 2, 8, or 16) and
enclose the non-decimal value with a pair of '#' characters as shown in the examples below:

2#10010001# (integer value 145)

16#FFCC# (integer value 65,484)

8#101# (integer value 65)

Physical literals

Physical literals are special types of literals used to represent physical quantities such as time, voltage,
current, distance, etc. Physical literals include both a numeric part (expressed as an integer) and a unit
specification. The following examples show how physical literals can be expressed:

300 ns (300 nanoseconds)

900 ps (900 picoseconds)

40 ma (40 milliamps)

Notes
In VHDL standard 1076-1987, bit string literals are only valid for the built-in type bit_vector. In 1076-
193, bit string literals can be applied to any string type, including std_logic_vector.

Understanding Types and Subtypes
The VHDL 1076 specification describes four classes of data types:
• Scalar types represent a single numeric value or, in the case of enumerated types, an enumeration

value. The standard types that fall into this class are integer, real (floating point), physical, and
enumerated types. All of these basic types can be thought of as numeric values.

• Composite types represent a collection of values. There are two classes of composite types:
arrays containing elements of the same type, and records containing elements of different types.

VHDL Language Reference

18 TR0114 (v1.1) May 20, 2005

• Access types provide references to objects in much the same way that pointer types are used to
reference data in software programming languages.

• File types reference objects (typically disk files) that contain a sequence of values.

Each type in VHDL has a defined set of values. For example, the value of an integer data type has a
defined range of at least -2147483647 to +2147483647. In most cases you will only be interested in a
subset of the possible values for a type, so VHDL provides the ability to specify a constraint whenever
an object of a given type is declared. The following declaration creates an object of type integer that is
constrained to the positive values of 0 to 255:

signal ShortInt: integer range 0 to 255;

VHDL also provides a feature called a subtype, allowing you to declare an alternate data type that is a
constrained version of an existing type. For example, the declaration

subtype SHORT integer range 0 to 255;

creates an alternate scalar type with a constrained range. Because SHORT is a subtype of integer, it
carries with it all operations available for the integer base type.

The four classes of data types are discussed in more detail below.

Scalar types
Scalar types are those types that represent a single value, and are ordered in some way so that
relational operations (such as greater than, less than, etc.) can be applied to them. These types include
the obvious numeric types (integer and real) as well as less obvious enumerated types such as
Boolean and Character.

Bit type

The bit data type is the most fundamental representation of a wire in VHDL. The bit type has only two
possible values, '0' and '1', that can be used to represent logical 0 and 1 values (respectively) in a
digital system. The following example uses bit data types to describe the operation of a full adder:

entity fulladder is

 port (X: in bit;

 Y: in bit;

 Cin: in bit;

 Cout: out bit;

 Sum: out bit);

end fulladder;

architecture concurrent of fulladder is

begin

 Sum <= X xor Y xor Cin;

 Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end concurrent;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 19

The bit data type supports the following operations: and, or, nand, nor, xor, xnor, not, =, /=, <, <=, >,
and >=.

Boolean type

The Boolean type has two possible values, True and False. Like the bit data type, the Boolean type is
defined as an enumerated type. The Boolean type does not have any implied width; it is simply the
result of a logical test (such as a comparison operation or an if statement) or the expression of some
logical state (such as in the assignment, ErrorFlag <= True;).

Integer type

An integer type includes integer values in a specified range. The only predefined integer type is integer.
Integer types have a minimum default range of -2147483647 to +2147483647, inclusive. However, you
can restrict that value with a range constraint and/or declare a new integer subtype with a range
constrained range, as in the following example:

subtype byteint integer range 0 to 255;

The predefined subtype natural restricts integers to the range of 0 to the specified (or default) upper
range limit. The predefined subtype positive restricts integers to the range of 1 to the specified (or
default) upper range limit.

An alternative to the integer data type is provided with IEEE Standard 1076.3. This standard defines
the standard data types signed and unsigned, which are array types (based on the IEEE 1164 9-valued
data types) that have properties of both array (composite) and numeric (scalar) data types. Like an
array, you can perform shifting and masking operations on them and, like integers, you can perform
arithmetic operations on them.

Real (floating point) type

Floating point types are used to approximate real number values. The predefined floating point type
provided in VHDL is called real. It has possible values in the range of at least -1.0E38 to +1.0E38.

The following declaration describes a signal of type real that has been initialized to a real value of
4589.3:

signal F0: real := 4589.3;

The real data type supports the following operations: =, /=, <, <=, >, >=, +, -, abs, +, -, *, and /.

Character type

VHDL's character data type is similar to the character types you might be familiar with from software
languages. Characters can be used to represent string data (such as you might use in a test bench), to
display messages during simulation, or to represent actual data values in your design description.
Unlike many software languages, character values in VHDL have no explicit value. This means that
they cannot be simply mapped onto numeric data types or assigned directly to arrays of bits.

There is no specific numeric value associated with a given character literal in VHDL. (You cannot, for
example, assign a character literal to an 8-bit array without providing a type conversion function that
assigns unique array values – such as ASCII values – to the target array for each character value.)

The character data type is an enumerated type. However, there is an implied ordering (refer to the
IEEE 1076-1993 specification for details).

VHDL Language Reference

20 TR0114 (v1.1) May 20, 2005

Severity_level type

Severity_level is a special data type used in the report section of an assert statement. There are four
possible values for an object of type severity_level: note, warning, error and failure. You might use
these severity levels in your test bench, for example, to instruct your simulator to stop processing when
an error (such as a test vector failure) is encountered during a simulation run. The following assert
statement makes use of the FAILURE severity level to indicate that the simulator should halt
processing if the specified condition evaluates false:

assert (error_flag = '1')

 report "There was an error; simulation has halted."

 severity FAILURE;

Time and other Physical types

Time is a standard data type that falls into the category of physical types in VHDL. Physical types are
those types that are used for measurement. They are distinguished by the fact that they have units of
measurement, such as (in the case of time) seconds, nanoseconds, etc. Each unit in the physical type
(with the exception of the base unit) is based on some multiple of the preceding unit. The definition for
type time, for example, might have been written as follows (the actual definition is implementation-
dependent):

type time isrange -2147483647 to 2147483647

 units

 fs;

 ps = 1000 fs;

 ns = 1000 ps;

 us = 1000 ns;

 ms = 1000 us;

 sec = 1000 ms;

 min = 60 sec;

 hr = 60 min;
 end units;

Enumerated types

Enumerated types are used to describe (internally) many of the standard VHDL data types. You can
also use enumerated types to describe your own unique data types. For example, if you are describing
a state machine, you might want to make use of an enumerated type to represent the various states of
the machine, as in the following example:

architecture FSM of VCONTROL is

 type states is (StateLive,StateWait,StateSample,StateDisplay);

 signal current_state, next_state: states;

begin

 . . .

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 21

 -- State transitions:
 STTRANS: process(current_state,Mode,VS,ENDFR)

 begin

 case current_state is

 when StateLive => -- Display live video on the output

 . . .
 when StateWait => -- Wait for vertical sync

 . . .
 when StateSample => -- Sample one frame of video

 . . .
 when StateDisplay => -- Display the stored frame

 . . .
 end case;

 end process;

end FSM;

In this example (the control logic for a video frame grabber), an enumerated type (states) is defined
in the architecture, and two signals (current_state and next_state) are declared for use in the
subsequent state machine description. Using enumerated types in this way has two primary
advantages: first, it is very easy to debug a design that uses enumerated types, because you can
observe the symbolic type names during simulation; second, and perhaps more importantly for this
state machine description, you can defer the actual encoding of the symbolic values until the time that
you implement the design in hardware.

Synthesis tools generally recognize the use of enumerated types in this way and can perform special
optimizations, assigning actual binary values to each symbolic name during synthesis. Synthesis tools
generally also allow you to override the encoding of enumerated data types, so you have control over
the encoding process.

Composite types

Data Type Values Comment

bit_vector "00100101", "10", etc. Array of bits

string "Simulation failed!", etc. Array of characters

records Any collection of values User defined composite data type

Composite types are collections of one or more types of values. An array is a composite data type that
contains items of the same type, either in a single dimension (such as a list of numbers or characters)
or in multiple dimensions (such as a table of values). Records, on the other hand, define collections of
possibly unrelated data types. Records are useful when you need to represent complex data values
that require multiple fields.

VHDL Language Reference

22 TR0114 (v1.1) May 20, 2005

Array types

An array is a collection of one or more values or objects of the same type. Arrays are indexed by a
number that falls into the declared range of the array.

The following is an example of an array type declaration:

 type MyArray isarray (15 downto 0) of std_ulogic;

This array type declaration specifies that the new type MyArray contains 16 elements, numbered
downward from 15 to 0. Arrays can be given ranges that decrement from left to right (as shown) or
increment (using the to keyword instead of downto). Index ranges do not have to begin or end at
zero.
The index range (in this case 15 downto 0) is what is known as the index constraint. It specifies the
legal bounds of the array. Any attempt to assign values to, or read values from, an element outside the
range of the array will result in an error during analysis or execution of the VHDL design description.

The index constraint for an array can specify an unbounded array using the following array range
syntax:

 type UnboundedArray is array (natural range <>) of std_ulogic;

This array type declaration specifies that the array UnboundedArray will have a index constraint
matching the range of integer subtype natural, which is defined as 0 to the highest possible integer
value (at least 2,147,483,647).

An array type is uniquely identified by the types (and constraints) of its elements, the number of
elements (its range), and the direction and order of its indices.

Arrays can have multiple indices, as in the following example:

type multi isarray(7 downto 0, 255 downto 0) of bit;

The following example (a parity generator) demonstrates how array elements can be accessed, in this
case within a loop:

entity parity10 is

 port(D: in array(0 to 9) of bit;

 ODD: out bit);

 constant WIDTH: integer := 10;

end parity10;

architecture behavior of parity10 is

begin

 process(D)

 variable otmp: Boolean;

 begin

 otmp := false;
 for i in 0 to D'length - 1 loop

 if D(i) = '1' then

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 23

 otmp := not otmp;

 end if;

 end loop;

 if otmp then

 ODD <= '1';
 else

 ODD <= '0';
 end if;

 end process;

end behavior;

The direction of an array range has an impact on the index values for each element. For example, the
following declarations:

signal A: bit_vector(0 to 3);

signal B: bit_vector(3 downto 0);

create two objects, A and B, that have the same width but different directions. The aggregate
assignments:

A <= ('1','0','1','0');

B <= ('0','1','0','1');

are exactly identical to the assignments:

A(0) <= '1';

A(1) <= '0';

A(2) <= '1';

A(3) <= '0';

B(3) <= '0';

B(2) <= '1';

B(1) <= '0';

B(0) <= '1';

In this case, the arrays have the same contents when viewed in terms of their array indices. Assigning
the value of B to A, as in:

A <= B;

which would be exactly equivalent to the assignments:

A(0) <= B(3);

A(1) <= B(2);

A(2) <= B(1);

A(3) <= B(0);

VHDL Language Reference

24 TR0114 (v1.1) May 20, 2005

The leftmost element of array A has an index of 0, while the leftmost value of array B has an index
value of 1.

Record types

A record is a composite type that has a value corresponding to the composite value of its elements.
The elements of a record may be of unrelated types. They may even be other composite types,
including other records. You can access data in a record either by referring to the entire record (as
when copying the contents of one record object to another record object), or individually by referring to
a field name. The following example demonstrates how you might declare a record data type consisting
of four elements:

type data_in_type is

 record

 ClkEnable: std_logic;
 Din: std_logic_vector(15 downto 0);

 Addr: integer range 0 to 255;

 CS: std_logic;
 end record;

The four names, ClkEnable, Din, Addr and CS are all field names of the record, representing data of
specific types that can be stored as a part of the record. For example, an object of type
data_in_type could be created and initialized with the following signal declaration:

signal test_record: data_in_type := ('0', "1001011011110011", 165, '1');

This initialization would be identical to the assignments:

test_record.ClkEnable <= '0';

test_record.Din <= "1001011011110011";

test_record.Addr <= 165;

test_record.CS <= '1';

Access and incomplete types
Access types and incomplete types are used to create data indirection in VHDL. You can think of
access types as being analogous to pointers in software programming languages such as C or Pascal.
Incomplete types are required to create recursive types such as linked lists, trees and stacks. Access
and incomplete types can be useful for creating dynamic representations of data (such as stacks), but
they are not supported in today's synthesis tools. Refer to the IEEE VHDL Language Reference
Manual for more information about these language features.

File types
File types are very useful for writing test benches. File types differ in the VHDL 1076-1987 and 1076-
1993 specifications. Discussions and examples of each are presented below.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 25

VHDL 1076-1987 file types

A file type is a special type of variable that contains sequential data. In the 1987 VHDL standard
language, files are implicitly opened when they are declared, and it is not possible to explicitly close
them. Objects of type file can be read from and written to using functions and procedures (read, write,
and endfile) that are provided in the standard library. Additional functions and procedures for
formatting of data read from files is provided in the Text I/O library, which is also part of the 1076
standard. The built-in functions available for reading and writing files in VHDL (the 1987 specification)
are:
• Read(f, object) – Given a declared file and an object, read one field of data from the file into that

object. When the read procedure is invoked, data is read from the file and the file is advanced to
the start of the next data field in the file.

• Write(f, object) – Given a declared file and an object, write the data contained in the object to the
file.

• Endfile(f) – Given a declared file, return a boolean true value if the current file marker is at the end
of the file.

Files in VHDL are sequential; there is no provision for opening a file and reading from a random
location in that file, or for writing specific locations in a file.

To use an object of type file, you must first declare the type of its contents, as shown below:

type file_of_characters isfile of character;

This declaration creates a new type, called file_of_characters, that consists of a sequence of
character values. To use this file type, you would then create an object of type
file_of_characters, as shown below:

file testfile: file_of_characters is in "TESTFILE.ASC";

This statement creates the object testfile and opens the indicated disk file. You can now use the
built-in read procedure to access data in the file. A complete architecture that loops through a file and
reads each character is shown below:

architecture sample87 of readfile is

begin

 Read_input: process

 type character_file is file of character;

 file cfile: character_file is in "TESTFILE.ASC";

 variable C: character;

 variable char_cnt: integer := 0;

 begin

 while not endfile(cfile) loop

 read (cfile, C) ; -- Get a character from cfile into C

 char_cnt = char_cnt + 1; -- Keep track of the number of

-- characters

VHDL Language Reference

26 TR0114 (v1.1) May 20, 2005

 end loop;

 end process;

end sample87;

VHDL 1076-1993 file types

In VHDL '93, file types and associated functions and procedures were modified to allow files to be
opened and closed as needed. In the 1987 specification, there is no provision for closing a file, and
problems can arise when it is necessary for two parts of the same design description to open the same
file at different points, or when existing files must be both read from and written to (as when appending
data). The built-in functions available for file operations in VHDL '93 are:
• File_open(f, fname, fmode) – Given a declared file object, file name (a string value) and a mode

(either READ-MODE, WRITE_MODE, or APPEND_MODE), open the indicated file.
• File_open(status, f, fname, fmode) – Same as above, but return the status of the file open

request in the first parameter, which is of type file_open_status. The status returned is either
OPEN_OK (meaning the file was successfully opened), STATUS_ERROR (meaning the file was
not opened because there was already an open file associated with the file object), NAME_ERROR
(meaning there was a system error related to the file name specified) or MODE_ERROR (meaning
that the specified mode is not valid for the specified file).

• File_close(f) – Close the specified file.

• Read(f, object) – Given a declared file and an object, read one field of data from the file into that
object. When the read procedure is invoked, data is read from the file and the file is advanced to
the start of the next data field in the file.

• Write(f, object) – Given a declared file and an object, write the data contained in the object to the
file.

• Endfile(f) – Given a declared file, return a boolean true value if the current file marker is at the end
of the file.

A complete architecture that opens a file and loops through it, reading each character in the file, is
shown below:

architecture sample93 of readfile is

begin

 Read_input: process

 type character_file is file of character;

 file cfile: character_file;

 variable C: character;

 variable char_cnt: integer := 0;

 begin

 file_open(cfile, "TESTFILE.ASC", READ_MODE);
 while not endfile(cfile) loop

 read (cfile, C) ; -- Get a character from cfile into C

 char_cnt = char_cnt + 1; -- Keep track of the number of

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 27

-- characters
 end loop;

 file_close(cfile);
 end process;

end sample93;

Notes
The IEEE 1164 specification describes an alternative to bit called std_ulogic. Std_ulogic has nine
possible values, allowing the values and states of wires (such as high-impedance, unknown, etc.) to be
more accurately described.

Floating point types have little use in synthesizable designs, as no synthesis tool available today will
accept them.

Multidimensional arrays are not generally supported in synthesis tools. They can, however, be useful
for describing test stimulus, memory elements, or other data that require a tabular form.

Records types are not generally synthesizable; however, they can be very useful when describing test
stimulus.

Type conversions and type marks
VHDL is a strongly typed language, meaning that you cannot simply assign a literal value or object of
one type to an object of another type. To allow the transfer of data between objects of different types,
VHDL includes type conversion features for types that are closely related. VHDL also allows type
conversion functions to be written for types that are not closely related. In addition, VHDL includes type
mark features to help specify (or qualify) the type of a literal value when the context or format of the
literal makes its type ambiguous.

Explicit type conversions
The simplest type conversions are explicit type conversions, which are only allowed between closely
related types. Two types are said to be closely related when they are either abstract numeric types
(integers or floating points), or if they are array types of the same dimensions and share the same
types (or the element types themselves are closely related) for all elements in the array. In the case of
two arrays, it is not necessary for the arrays to have the same direction. If two subtypes share the
same base type, then no explicit type conversion is required.

The following example demonstrates implicit and explicit type conversions:

architecture example of typeconv is

 type array1 is array(0 to 7) of std_logic;

 type array2 is array(7 downto 0) of std_logic;

 subtype array3 is std_logic_vector(0 to 7);

VHDL Language Reference

28 TR0114 (v1.1) May 20, 2005

 subtype array4 is std_logic_vector(7 downto 0);

 signal a1: array1;

 signal a2: array2;

 signal a3: array3;

 signal a4: array4;

begin

 a2 <= array2(a1); -- explicit type conversion

 a4 <= a3; -- no explicit type conversion needed
end example;

Type conversion functions
To convert data from one type to an unrelated type (such as from an integer type to an array type), you
must make use of a type conversion function. Type conversion functions may be obtained from
standard libraries (such as the IEEE 1164 library), from vendor-specific libraries (such as those
supplied by synthesis tool vendors), or you can write you own type conversion functions.

A type conversion function is a function that accepts one argument of a specified type and returns the
equivalent value in another type.

The following two functions are examples of type conversion functions that convert between integer
and array (std_ulogic_vector) data types:

-- Convert a std_ulogic_vector to an unsigned integer

--
function to_uint (a: std_ulogic_vector) return integer is

 alias av: std_ulogic_vector (1 to a'length) is a;

 variable val: integer := 0;

 variable b: integer := 1;

begin

 for i in a'length downto 1 loop

 if (av(i) = '1') then -- if LSB is '1',

 val := val + b; -- add value for current bit position
 end if;

 b := b * 2; -- Shift left 1 bit
 end loop;

 return val;

end to_uint;

--

-- Convert an integer to a std_ulogic_vector

--

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 29

function to_vector (size: integer; val: integer) return std_ulogic_vector is

 variable vec: std_ulogic_vector (1 to size);

 variable a: integer;

begin

 a := val;
 for i in size downto 1 loop

 if ((a mod 2) = 1) then

 vec(i) := '1';
 else

 vec(i) := '0';
 end if;

 a := a / 2;
 end loop;

 return vec;

end to_vector;

The following example (a loadable counter) demonstrates how these two functions could be used:

library ieee;

use ieee.std_logic_1164.all;

library types; -- Type conversions have been compiled into library
'types'
use types.conversions.all;

entity count16 is

 port (Clk,Rst,Load: in std_ulogic;

 Data: in std_ulogic_vector(3 downto 0);

 Count: out std_ulogic_vector(3 downto 0));

end count16;

architecture count16a of count16 is

begin

 process(Rst,Clk)

 variable Q: integer range 0 to 15;

 begin

 if Rst = '1' then -- Asynchronous reset

 Q := 0;
 elsif rising_edge(Clk) then

 if Load = '1' then

 Q := to_uint(Data); -- Convert vector to integer

VHDL Language Reference

30 TR0114 (v1.1) May 20, 2005

 elsif Q = 15 then

 Q := 0;
 else

 Q := Q + 1;
 end if;

 end if;

 Count <= to_vector(4,Q); -- Convert integer to vector

 -- for use outside the process.
 end process;

end count16a;

In this example, the interface specified in the entity port list uses standard logic data types, including a
std_ulogic_vector array data type for the counter output. Because there are no arithmetic operations
defined for the std_ulogic_vector data type, it is necessary to introduce an intermediate integer variable
and convert the Data input from a std_ulogic_vector type to an integer when assigning it to the
intermediate variable, and to convert the intermediate variable back to a std_ulogic_vector array type
when assigning it to the Count output.

Another common application of type conversion functions is the conversion of string data read from a
file to array or record data types suitable for use as stimulus in a test bench. The following function
accepts data in the form of a fixed-length string and converts it, character by character, into a record
data type:

type test_record is record

 CE: std_ulogic; -- Clock enable

 Set: std_ulogic; -- Preset

 Din: std_ulogic; -- Binary data input
 Doutput: std_ulogic_vector (15 downto 0); -- Expected output

end record;

function str_to_record(s: string(18 downto 0)) return test_record is

 variable temp: test_record;

begin

 case s(18) is

 when '1' => temp.CE := '1';

 when '0' => temp.CE := '0';

 when others => temp.CE = 'X';

 end case;

 case s(17) is

 when '1' => temp.Set := '1';

 when '0' => temp.Set := '0';

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 31

 when others => temp.Set = 'X';

 end case;

 case s(16) is

 when '1' => temp.Din := '1';

 when '0' => temp.Din := '0';

 when others => temp.Din = 'X';

 end case;

 for i in 15 downto 0 loop

 case s(i) is

 when '1' => temp.Doutput := '1';

 when '0' => temp.Doutput := '0';

 when others => temp.Doutput = 'X';

 end case;

 end loop;

 return temp;

end str_to_record;

There are many applications of type conversion functions, and many possible ways to write them. If
you are writing a synthesizable design description, you should (whenever possible) make use of type
conversions that have been provided to you by your synthesis vendor, as type conversion functions
can be difficult (in some cases impossible) for synthesis tools to handle.

Ambiguous literal types
Functions and procedures in VHDL are uniquely identified not only by their names, but also by the
types of their arguments. This means that you can, for example, write two functions to perform similar
tasks, but on different types of input data. The ability to overload functions and procedures can lead to
ambiguities when functions are called, if the types of one or more arguments are not explicitly stated.

For example, consider two type conversion functions with the following interface declarations:

function to_integer (vec: bit_vector) return integer is

 . . .
end to_integer;

function to_integer (s: string) return integer is

 . . .
end to_integer;

If you were to write an assignment statement such as:

architecture ambiguous of my_entity is

 signal Int35: integer;

begin

VHDL Language Reference

32 TR0114 (v1.1) May 20, 2005

 Int35 <= to_integer("00100011"); -- This will produce an error

 . . .
end ambiguous;

then the compiler would produce an error message because it would be unable to determine which of
the two functions is appropriate – the literal "00100011" could be either a string or bit_vector data
type.

To remove data type ambiguity in such cases, you have two options: you can either introduce an
intermediate constant, signal or variable, as in:

architecture unambiguous1 of my_entity is

 constant Vec35: bit_vector := "00100011";

 signal Int35: integer;

begin

 Int35 <= to_integer(Vec35);

 . . .
end unambiguous1;

or introduce a type mark to qualify the argument, as in:

architecture unambiguous2 of my_entity is

 signal Int35: integer;

begin

 Int35 <= to_integer(bit_vector'"00100011");

 . . .
end unambiguous2;

Resolved and unresolved types
A signal requires resolution whenever it is simultaneously driven with more than one value. By default,
data types (whether standard types or types you define) are unresolved, resulting in errors being
generated when there are multiple values being driven onto signals of those types. These error
messages may be the desired behavior, as it is usually a design error when such conditions occur. If
you actually intend to drive a signal with multiple values (as in the case of a bus interface), then you will
need to use a resolved data type.

Data types are resolved only when a resolution function has been included as a part of their definition.
A resolution function is a function that specifies, for all possible combinations of one or more input
values (expressed as an array of the data type being resolved), what the resulting (resolved) value will
be.
The following sample package defines a resolved data type consisting of four possible values, '0',
'1', 'X' and 'Z'. The resolution function covers all possible combinations of input values and
specifies the resolved value corresponding to each combination:

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 33

package types is

 type xbit is ('0', -- Logical 0

 '1', -- Logical 1

 'X', -- Unknown

 'Z'); -- High Impedance

 -- unconstrained array is required for the resolution function...
 type xbit_vector is array (natural range <>) of xbit;

 -- resolution function...
 function resolve_xbit (v : xbit_vector) return xbit;

 -- resolved logic type...
 subtype xbit_resolved is resolve_xbit xbit;

end types;

package body types is

 -- Define resolutions as a table...
 type xbit_table is array(xbit, xbit) of xbit;

 constant resolution_table: xbit_table := (

 -- 0 1 X Z

 ('0', 'X', 'X', '0'), -- 0

 ('X', '1', 'X', '1'), -- 1

 ('X', 'X', 'X', 'X'), -- X

 ('0', '1', 'X', 'Z') -- Z

);

 function resolve_xbit (v: xbit_vector) return xbit is

 variable result: xbit;

 begin

 -- test for single driver
 if (v'length = 1) then

 result := v(v'low); -- Return the same value if only 1 value
 else

 result := 'Z';
 for i in v'range loop

 result := resolution_table(result, v(i));
 end loop;

 end if;

VHDL Language Reference

34 TR0114 (v1.1) May 20, 2005

 return result;

 end resolve_xbit;

end types;

The resolution function is invoked automatically whenever a signal of the associated type is driven with
one or more values. The array argument v represents all of the values being driven onto the signal at
any given time.
With the types xbit and xbit_resolved defined in this way, the resolved data type
xbit_resolved can be used for situations in which resolutions are required. The following example
shows how the resolved type xbit_resolved could be used to describe the operation of a pair of
three-state signals driving a common signal:

use work.types.all;

entity threestate is

 port (en1, en2: in xbit_resolved;

 A,B: in xbit_resolved;

 O: out xbit_resolved);

end threestate;

architecture sample of threestate is

 signal tmp1,tmp2: xbit_resolved;

begin

 tmp1 <= A when en1 else 'Z';

 tmp2 <= B when en2 else 'Z';

 O <= tmp1;

 O <= tmp2;
end sample;

In this example, the output O could be driven with various combinations of the values of A and B and
the value 'Z', depending on the states of the two inputs en1 and en2. The resolution function takes
care of calculating the correct value for O for any of these combinations during simulation.

Notes
As a practical matter, you should never write an arbitrary-width type conversion function that you intend
to use in a synthesizable design description. Instead, you should make use of type conversion
functions provided by your synthesis vendor or use the 1076.3 signed or unsigned type.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 35

VHDL Operators
Operator: abs

An absolute value operator which can be applied to any numeric type in an expression.

Example: Delta <= abs(A-B)

Operator: xnor
The logical “both or neither” (equality) operator which can be used in an expression. The expression
“A xnor B” returns True only when (1) A is true and B is true, or (2) A is false and B is false.

Operator: and

The logical “and” operator which can be used in an expression. The expression “A and B” returns true
only if both A and B are true.

Operator: mod

The modulus operator which can be applied to integer types. The result of the expression “A mod B” is
an integer type and is defined to be the value such that:

(1) the sign of (A mod B) is the same as the sign of B, and

(2) abs (A mod B) < abs (B), and

(3) (A mod B) = (A * (B - N)) for some integer N.

Operator: nand

The logical “not and” operator which can be used in an expression. It produces the opposite of the
logical “and” operator. The expression “A nand B” returns True only when (1) A is false, or (2) B is
false, or (3) both A and B are false.

Operator: nor
The logical “not or” operator which can be used in an expression. It produces the opposite of the
logical “or” operator. The expression “A nor B” returns True only when both A and B are false.

Operator: not
The logical “not” operator which can be used in an expression. The expression “not A” returns True if
A is false and returns False if A is true.

Operator: or
The logical “or” operator which can be used in an expression. The expression “A or B” returns True if
(1) A is true, or (2) B is true, or (3) both A and B are true.

Operator: rem

The remainder operator which can be applied to integer types. The result of the expression “A rem B”
is an integer type and is defined to be the value such that:

(1) the sign of (A rem B) is the same as the sign of A, and

(2) abs (A rem B) < abs (B), and

(3) (A rem B) = (A - (A / B) * B).

VHDL Language Reference

36 TR0114 (v1.1) May 20, 2005

Operator: rol
Rotate left operator.

Example: Sreg <= Sreg rol 2;

Operator: ror
Rotate right operator.

Example: Sreg <= Sreg ror 2;

Operator: sla

Shift left arithmetic operator.

Example: Addr <= Addr sla 8;

Operator: sll
Shift left logical operator.

Example: Addr <= Addr sll 8;

Operator: sra

Shift right arithmetic operator.

Example: Addr <= Addr sra 8;

Operator: srl
Shift right logical operator.

Example: Addr <= Addr srl 8;

Operator: xor
The logical “one or the other but not both” (inequality) operator which can be used in an expression.
 The expression “A xor B” returns True only when (1) A is true and B is false, or (2) A is false and B is
true.

Operator: =

The equality operator which can be used in an expression on any type except file types. The resulting
type of an expression using this operator is Boolean (that is, True or False). The expression “A = B”
returns True only if A and B are equal.

Operator: /=

The inequality operator which can be used in an expression on any type except file types. The
resulting type of an expression using this operator is Boolean (that is, True or False). The expression
“A /= B” returns True only if A and B are not equal.

Operator: :=

The assignment operator for a variable. The expression “TEST_VAR := 1” means that the variable
TEST_VAR is assigned the value 1.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 37

Operator: <

The “less than” operator which can be used in an expression on scalar types and discrete array types.
 The resulting type of an expression using this operator is Boolean (that is, True or False). The
expression “A < B” returns True only if A is less than B.

Operator: <=

This symbol has two purposes. When used in an expression on scalar types and discrete array types,
it is the “less than or equal to” operator. The resulting type of an expression using this operator in this
context is Boolean (that is, True or False). In this context, the expression “A <= B” returns True only if
A is less than or equal to B, for example:

LE := '1' when A <= B else '0';

In a signal assignment statement, the symbol “<=“ is the assignment operator. Thus, the expression

TEST_SIGNAL <= 5;

means that the signal TEST_SIGNAL is assigned the value 5.

Operator: >

The “greater than” operator which can be used in an expression on scalar types and discrete array
types. The resulting type of an expression using this operator is Boolean (that is, True or False). The
expression “A > B” returns True only if A is greater than B.

Operator: >=

The “greater than or equal to” operator which can be used in an expression on scalar types and
discrete array types. The resulting type of an expression using this operator is Boolean (that is, True or
False). The expression “A >= B” returns True only if A is greater than or equal to B.

Operator: +

The addition operator. Both operands must be numeric and of the same type. The result is also of the
same numeric type. Thus, if A = 2 and B = 3, the result of the expression “A + B” is 5.

This operator may also be used as a unary operator representing the identity function. Thus, the
expression “+A” would be equal to A.

Operator: -
The subtraction operator. Both operands must be numeric and of the same type. The result is also of
the same numeric type. Thus, if A = 5 and B = 3, the result of the expression “A - B” is 2.

This operator may also be used as a unary operator representing the negative function. Thus, the
expression “-A” would be equal to the negative of A.

Operator: &

The concatenation operator. Each operand must be either an element type or a 1-dimensional array
type. The result is a 1-dimensional array type.

Operator: *
The multiplication operator. Both operands must be of the same integer or floating point type.

VHDL Language Reference

38 TR0114 (v1.1) May 20, 2005

The multiplication operator can also be used where one operand is of a physical type and the other is
of an integer or real type. In these cases, the result is of a physical type.

Operator: /
The division operator. Both operands must be of the same integer or floating point type.

The division operator can also be used where a physical type is being divided by either an integer type
or a real type. In these cases, the result is of a physical type. Also, a physical type can be divided by
another physical type, in which case the result is an integer.

Operator: **
The exponentiation operator. The left operand must be of an integer type or a floating point type, and
the right operand (the exponent) must be of an integer type. The result is of the same type as the left
operand.

Understanding VHDL Operators
The following sections summarize the operators available in VHDL. As indicated, not all operators can
be used for all data types, and the data type that results from an operation may differ from the type of
the object on which the operation is performed.

Logical operators

The logical operators and, or, nand, nor, xor and xnor are used to describe Boolean logic operations, or
perform bit-wise operations, on bits or arrays of bits.

Operator Description Operand Types Result Types

and AND Any Bit or Boolean type Same Type

or OR Any Bit or Boolean type Same Type

nand NOT AND Any Bit or Boolean type Same Type

nor NOT OR Any Bit or Boolean type Same Type

xor Exclusive OR Any Bit or Boolean type Same Type

xnor Exclusive NOR Any Bit or Boolean type Same Type

Relational operators

Relational operators are used to test the relative values of two scalar types. The result of a relational
operation is always a Boolean true or false value.

Operator Description Operand Types Result Type

= Equality Any type Boolean

/= Inequality Any type Boolean

< Less than Any scalar type or discrete array Boolean

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 39

<= Less than or equal Any scalar type or discrete array Boolean

> Greater than Any scalar type or discrete array Boolean

>= Greater than or equal Any scalar type or discrete array Boolean

Adding operators

The adding operators can be used to describe arithmetic functions or, in the case of array types,
concatenation operations.

Operator Description Operand Types Result Type

+ Addition Any numeric type Same type

- Subtraction Any numeric type Same type

& Concatenation Any numeric type Same type

& Concatenation Any array or element type Same array type

Multiplying operators

The multiplying operators can be used to describe mathematical functions on numeric types.

Operator Description Operand Types Result Type

* Multiplication Left: any integer or floating point
type.

Right: same type

Same as left

* Multiplication Left: any physical type.

Right: integer or real type.

Same as left

* Multiplication Left: integer or real type.

Right: any physical type.

Same as right

/ Division Left: any integer or floating point
type.

Right: same type

Same as left

/ Division Left: any integer or floating point
type.

Right: same type

Same as left

/ Division Left: integer or real type.

Right: any physical type.

Same as right

mod Modulus Any integer type Same type

rem Remainder Any integer type Same type

VHDL Language Reference

40 TR0114 (v1.1) May 20, 2005

Sign operators

Sign operators can be used to specify the sign (either positive or negative) of a numeric object or
literal.

Operator Description Operand Types Result Type

+ Identity Any numeric type Same type

- Negation Any numeric type Same type

Miscellaneous operators

The exponentiation and absolute value operators can be applied to numeric types, in which case they
result in the same numeric type. The logical negation operator results in the same type (bit or Boolean),
but with the reverse logical polarity. The shift operators provide bit-wise shift and rotate operations for
arrays of type bit or Boolean.

Operator Description Operand Types Result Type

** Exponentiation Left: any integer type

Right: integer type

Same as left

** Exponentiation Left: any floating point type

Right: integer type

Same as left

abs Absolute value Any numeric type Same as left

not Logical negation Any Bit or Boolean type Same as left

sll Shift left logical Left: Any one-dimensional array of Bit or
Boolean

Right: integer type

Same as left

srl Shift right logical Left: Any one-dimensional array of Bit or
Boolean

Right: integer type

Same as left

sla Shift left arithmetic Left: Any one-dimensional array of Bit or
Boolean

Right: integer type

Same as left

sra Shift right arithmetic Left: Any one-dimensional array of Bit or
Boolean

Right: integer type

Same as left

rol Rotate left Left: Any one-dimensional array of Bit or
Boolean

Right: integer type

Same as left

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 41

ror Rotate right Left: Any one-dimensional array of Bit or
Boolean

Right: integer type

Same as left

Notes
Operations defined for types Bit are also valid for type std_ulogic and std_logic.

Synthesis tools vary in their support for multiplying operators.

Understanding VHDL Attributes
Attributes are a feature of VHDL that allow you to extract additional information about an object (such
as a signal, variable or type) that may not be directly related to the value that the object carries.
Attributes also allow you to assign additional information (such as data related to synthesis) to objects
in your design description.

There are two classes of attributes: those that are predefined as a part of the 1076 standard, and those
that have been introduced outside of the standard, either by you or by your design tool supplier.

Predefined attributes
The VHDL specification describes five fundamental kinds of attributes. These five kinds of attributes
are categorized by the results that are returned when they are used. The possible results returned from
these attributes are: a value, a function, a signal, a type or a range.

Predefined attributes are always applied to a prefix (such as a signal or variable name, or a type or
subtype name), as in the statement:

wait until Clk = '1' and Clk'event and Clk'last_value = '0';

In this statement, the attributes 'event and 'last_value have been applied to the prefix Clk, which
is a signal.

Some attributes also include parameters, so they are written in much the same way you would write a
call to a function:

variable V: state_type := state_type'val(2);

In this case, the attribute 'val has been applied to the prefix state_type (which is a type name) and
has been given an attribute parameter, the integer value 2.

Value kind attributes

Value kind attributes: 'Left, 'Right, 'High, 'Low, 'Length, 'Ascending
The value kind attributes that return an explicit value and are applied to a type or subtype include the
following:
• 'Left– this attribute returns the left-most element index (the bound) of a given type or subtype.

Example:
type bit_array isarray (1 to 5) of bit;

 variable L: integer := bit_array'left; -- L has a value of 1

• 'Right– this attribute returns the right-most bound of a given type or subtype.

VHDL Language Reference

42 TR0114 (v1.1) May 20, 2005

Example:
type bit_array is array (1 to 5) of bit;

 variable R: integer := bit_array'right; -- R has a value of 5

• 'High– this attribute returns the upper bound of a given scalar type or subtype.

Example:
type bit_array is array(-15 to +15) of bit;

 variable H: integer := bit_array'high; -- H has a value of 15

• 'Low– this attribute returns the upper bound of a given scalar type or subtype.

Example:
type bit_array is array(15 downto 0) of bit;

 variable L: integer := bit_array'low; -- L has a value of 0

• 'Length– this attribute returns the length (number of elements) of an array.

Example:
type bit_array is array (0 to 31) of bit;

variable LEN: integer := bit_array'length -- LEN has a value of 32

• 'Ascending– this attribute (VHDL '93 attribute) returns a boolean true value if the type or subtype is
declared with an ascending range.

Example:
type asc_array is array (0 to 31) of bit;

type desc_array is array (36 downto 4) of bit;

variable A1: boolean := asc_array'ascending; -- A1 has a value of true

variable A2: boolean := desc_array'ascending; -- A2 has a value of false

As you can see from the examples, value kind attributes (and all other predefined attributes) are
identified by the ' (single quote) character. They are applied to type names, signals names and other
identifiers, depending on the nature of the attribute. The value type attributes are used to determine the
upper and lower (or left and right) bounds of a given type.

The following sample architecture uses the 'right and 'left attributes to determine the left- and right-most
element indices of an array in order to describe a width-independent shift operation:

architecture behavior of shifter is

begin

 reg: process(Rst,Clk)

 begin

 if Rst = '1' then -- Async reset

 Qreg := (others => '0');

 elsif rising_edge(Clk) then

 Qreg := Data(Data'left+1 to Data'right) & Data(Data'left);

 end if;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 43

 end process;

end behavior;

The 'right, 'left, 'high and 'low attributes can be used to return non-numeric values. The following
example demonstrates how you can use the 'left and 'right attributes to identify the first and last items
in an enumerated type:

architecture example of enums is

 type state_type is (Init, Hold, Strobe, Read, Idle);

 signal L, R: state_type;

begin

 L <= state_type'left; -- L has the value of Init

 R <= state_type'right; -- R has the value of Idle
end example;

Value kind attributes: 'Structure, 'Behavior
There are two additional value kind attributes that can be used to determine information about blocks
or attributes in a design. These attributes, 'structure and 'behavior, return true or false values
depending on whether the block or architecture being referenced includes references to lower-level
components.
• 'Structure– this attribute returns a true value if the prefix (which must be an architecture name)

includes references to lower-level components.
• 'Behavior – this attribute returns a true value if the prefix (which must be an architecture name)

does not include references to lower-level components.

Value kind attributes: 'Simple_name, 'Instance_name, 'Path_name
VHDL 1076-1993 added three attributes that can be used to determine the precise configuration of
entities in a design description. These attributes return information about named entities, which are
various items that become associated with identifiers, character literals or operator symbols as the
result of a declaration.
• 'Simple_name – this attribute returns a string value corresponding to the prefix, which must be a

named entity.
• 'Instance_name – this attribute returns a string value corresponding to the complete path (from the

design hierarchy root) to the named entity specified in the prefix, including the names of all
instantiated design entities. The string returned by this attribute has a fixed format that is defined in
the IEEE VHDL Language Reference Manual.

• 'Path_name – this attribute returns a string value corresponding to the complete path (from the
design hierarchy root) to the named entity specified in the prefix. The string returned by this
attribute has a fixed format that is defined in the IEEE VHDL Language Reference Manual.

Function kind attributes

Function kind attributes: 'Pos, 'Val, 'Succ, 'Pred, 'Leftof, 'Rightof

VHDL Language Reference

44 TR0114 (v1.1) May 20, 2005

Attributes that return information about a given type, signal, or array value are called function kind
attributes. VHDL defines the following function kind attributes that can be applied to types:
• 'Pos(value)– this attribute returns the position number of a type value.

Example:
type state_type is (Init, Hold, Strobe, Read, Idle);

variable P: integer := state_type'pos(Read); -- P has the value of 3

• 'Val(value)– this attribute returns the value corresponding to a position number of a type value.

Example:
type state_type is (Init, Hold, Strobe, Read, Idle);

variable V: state_type := state_type'val(2); -- V has the value of Strobe

• 'Succ(value)– this attribute returns the value corresponding to position number after a given type
value.

Example:
type state_type is (Init, Hold, Strobe, Read, Idle);

variable V: state_type := state_type'succ(Init); -- V has the value of
Hold

• 'Pred(value)– this attribute returns the value corresponding to position number preceding a given
type value.

Example:
type state_type is (Init, Hold, Strobe, Read, Idle);

variable V: state_type := state_type'pred(Hold); -- V has the value of
Init

• 'Leftof(value)– this attribute returns the value corresponding to position number to the left of a
given type value.

Example:
type state_type is (Init, Hold, Strobe, Read, Idle);

variable V: state_type := state_type'leftof(Idle); -- V has the value of
Read

• 'Rightof(value)– this attribute returns the value corresponding to position number to the right of a
given type value.

Example:
type state_type is (Init, Hold, Strobe, Read, Idle);

variable V: state_type := state_type'rightof(Read); -- V has the value of
Idle

From the above descriptions, it might appear that the 'val and 'succ attributes are equivalent to the
attributes 'leftof and 'rightof. One case where they would be different is the case where a subtype is
defined that changes the ordering of the base type:

type state_type is (Init, Hold, Strobe, Read, Idle);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 45

subtype reverse_state_type is state_type range Idle downto Init;

variable V1: reverse_state_type := reverse_state_type'leftof(Hold);

-- V1 has the value of Strobe
variable V2: reverse_state_type := reverse_state_type'pred(Hold);

-- V2 has the value of Init

Function kind array attributes: 'Left, 'Right, 'High, 'Low
The function kind attributes that can be applied to array objects include:
• 'Left(value)– this attribute returns the index value corresponding to the left bound of a given array

range.

Example:
type bit_array is array (15 downto 0) of bit;

variable I: integer := bit_array'left(bit_array'range); -- I has the
value of 15

• 'Right(value)– this attribute returns the index value corresponding to the right bound of a given
array range.

Example:
type bit_array is array (15 downto 0) of bit;

variable I: integer := bit_array'right(bit_array'range); -- I has the
value of 0

• 'High(value)– this attribute returns the index value corresponding to the upper-most bound of a
given array range.

Example:
type bit_array is array (15 downto 0) of bit;

variable I: integer := bit_array'high(bit_array'range); -- I has the
value of 15

• 'Low(value)– this attribute returns the index value corresponding to the lower bound of a given
array range.

Example:
type bit_array is array (15 downto 0) of bit;

variable I: integer := bit_array'low(bit_array'range); -- I has the value
of 0

Function kind attributes: 'Event, 'Active, 'Last_event, 'Last_value, 'Last_active
Function kind attributes that return information about signals (such as whether that signal has changed
its value or its previous value) include:
• 'Event– this attribute returns a true value of the signal had an event (changed its value) in the

current simulation delta cycle.

Example:
process(Rst,Clk)

VHDL Language Reference

46 TR0114 (v1.1) May 20, 2005

begin

 if Rst = '1' then

 Q <= '0';
 elsif Clk = '1' and Clk'event then -- Look for clock edge

 Q <= D;
 end if;

end process;

• 'Active– this attribute returns true if any transaction (scheduled event) occurred on this signal in the
current simulation delta cycle.

Example:
process

variable A,E: boolean;

begin

 Q <= D after 10 ns;

 A := Q'active; -- A gets a value of True

 E := Q'event; -- E gets a value of False

 . . .
end process;

• 'Last_event– this attribute returns the time elapsed since the previous event occurring on this
signal.

Example:
process

variable T: time;

begin

 Q <= D after 5 ns;

 wait 10 ns;

 T := Q'last_event; -- T gets a value of 5 ns

 . . .
end process;

• 'Last_value– this attribute returns the value of the signal prior to the last event.

Example:
process

variable V: bit;

begin

 Q <= '1';
 wait 10 ns;

 Q <= '0';

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 47

 wait 10 ns;

 V := Q'last_value; -- V gets a value of '1'

 . . .
end process;

• 'Last_active– this attribute returns the time elapsed since the last transaction (scheduled event) of
the signal.

Example:
process

variable T: time;

begin

 Q <= D after 30 ns;

 wait 10 ns;

 T := Q'last_active; -- T gets a value of 10 ns

 . . .
end process;

Function kind attributes: 'Image, 'Value
The 'image and 'value attributes were added in the 1993 specification to simplify the reporting of
information through Text I/O. These attributes both return string results corresponding to their
parameter values.
• 'Image(expression)– this attribute (VHDL '93 attribute) returns a string representation of the

expression parameter, which must be of a type corresponding to the attribute prefix.

Example:
assert (Data.Q = '1')

 report “Test failed on vector “ & integer'image(vector_idx)

 severity Warning;

• 'Value(string)– this attribute (VHDL '93 attribute) returns a value, of a type specified by the prefix,
corresponding to the parameter string.

Example:
write(a_outbuf,string'(“Enter desired state (example: S1)”));

writeline(OUTPUT,a_outbuf);

readline(INPUT,a_inbuf);

read(a_inbuf,instate); -- instate is a string type

next_state <= state_type'value(instate);

-- convert string to type state_type

write(a_outbuf,string'(“Enter duration (example: 15)”));

writeline(OUTPUT,a_outbuf);

readline(INPUT,a_inbuf);

VHDL Language Reference

48 TR0114 (v1.1) May 20, 2005

read(a_inbuf,induration); -- induration is a string type

duration <= integer'value(induration);

-- convert string to type integer

Signal kind attributes

Signal kind attributes: 'Delayed, 'Stable, 'Quiet, 'Transaction
The signal kind attributes are attributes that, when invoked, create special signals that have values and
types based on other signals. These special signals can then be used anywhere in the design
description that a normally declared signal could be used. One example of where you might use such
an attribute is to create a series of delayed clock signals that are all based on the waveform of a base
clock signal.

Signal kind attributes include the following:
• 'Delayed(time)– this attribute creates a delayed signal that is identical in waveform to the signal the

attribute is applied to. (The time parameter is optional, and may be omitted.)

Example:
process(Clk'delayed(hold))

-- Hold time check for input Data
 begin

 if Clk = '1' and Clk'stable(hold) then

 assert(Data'stable(hold))

 report "Data input failed hold time check!"

 severity Warning;

 end if;

end process;

• 'Stable (time)– this attribute creates a signal of type boolean that becomes true when the signal is
stable (has no event) for some given period of time.

Example:
process

variable A: Boolean;

begin

 wait for 30 ns;

 Q <= D after 30 ns;

 wait 10 ns;

 A := Q'stable(20 ns);

 -- A gets a value of true (event has not

-- yet occurred)
 wait 30 ns;

 A := Q'stable(20 ns);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 49

-- A gets a value of false (only 10 ns

-- since event)

 . . .
end process;

• 'Quiet (time)– this attribute creates a signal of type boolean that becomes true when the signal has
no transactions (scheduled events) or actual events for some given period of time.

Example:
process

variable A: Boolean;

begin

 wait for 30 ns;

 Q <= D after 30 ns;

 wait 10 ns;

 A := Q'quiet(20 ns);

-- A gets a value of false (10 ns since

-- transaction)
 wait 40 ns;

 A := Q'quiet(20 ns);

-- A finally gets a value of true (20 ns

-- since event)

 . . .
end process;

• 'Transaction– this attribute creates a signal of type bit that toggles its value whenever a transaction
or actual event occurs on the signal the attribute is applied to.

Type kind attributes

Type kind attribute: 'Base
• 'Base– this attribute returns the base type for a given type or subtype.

Example:
type mlv7 is ('0','1','X','Z','H','L','W');

subtype mlv4 is mlv7 range '0' to 'Z';

variable V1: mlv4 := mlv4'right;

-- V1 has the value of 'Z'
variable V2: mlv7 := mlv4'base'right;

-- V2 has the value of 'W'
variable I1: integer := mlv4'width;

-- I1 has the value of 4

VHDL Language Reference

50 TR0114 (v1.1) May 20, 2005

variable I2: integer := mlv4'base'width;

-- I2 has the value of 7

Range kind attributes

Range Kind Attributes: 'Range, 'Reverse_range
The range kind attributes return a special value that is a range, such as you might use in a declaration
or looping scheme.
• 'Range– this attribute returns the range value for a constrained array.

Example:
function parity(D: std_logic_vector) return

std_logic is

 variable result: std_logic := '0';

begin

 for i in D'range loop

 result := result xor D(i);

 end loop;

 return result;

end parity;

• 'Reverse_range– this attribute returns the reverse of the range value for a constrained array.

Example:
STRIPX: for i in D'reverse_range loop

 if D(i) = 'X' then

 D(i) = '0';
 else

 exit; -- only strip the terminating Xs

 end if;

 end loop;

Custom attributes
Custom attributes are those attributes that are not defined in the IEEE specifications, but that you (or
your simulation or synthesis tool vendor) define for your own use. A good example is the attribute
enum_encoding, which is provided by a number of synthesis tool vendors to allow specific binary
encodings to be attached to objects of enumerated types.

An attribute such as enum_encoding is declared (again, either by you or by your design tool vendor)
using the following method:

attribute enum_encoding: string;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 51

This attribute could be written directly in your VHDL design description, or it could have been provided
to you by the tool vendor in the form of a package. Once the attribute has been declared and given a
name, it can be referenced as needed in the design description:

type statevalue is (INIT, IDLE, READ, WRITE, ERROR);

attribute enum_encoding of statevalue: type is "000 001 011 010 110";

When these declarations are processed by a synthesis tool that supports the enum_encoding attribute,
information about the encoding of the type statevalue will be used by that tool. When the design is
processed by design tools (such as simulators) that do not recognize the enum_encoding attribute, it
will simply be ignored.

Custom attributes are a convenient "back door" feature of VHDL, and design tool vendors have created
many such attributes to give you more control over the synthesis and simulation process. For detailed
information about custom attributes, refer to your design tool documentation.

Notes
The function kind attributes 'active, 'last_event, 'last_value and 'last_active are not generally supported
in synthesis tools. Only the 'event attribute should be used when describing synthesizable registered
circuits. The 'active, 'last_event, 'last_value and 'last_active attributes should only be used to describe
circuits for test purposes (such as for setup and hold checking). If they are encountered by a synthesis
program, they will either be ignored, or the program will return an error and halt operation.

VHDL Language Reference

52 TR0114 (v1.1) May 20, 2005

Using Standard Logic
This section takes a closer look at two important standards that augment Standard 1076, adding
important capabilities for both simulation and synthesis. These two standards are IEEE Standards
1164 and 1076.3.

IEEE Standard 1164
IEEE Standard 1164 was released in the late 1980s, and helped to overcome an important limitation of
VHDL and its various commercial implementations. These limitations were created by the fact that
VHDL, while being rich in data types, did not include a standard type that would allow multiple values
(high-impedance, unknown, etc.) to be represented for a wire. These metalogic values are important
for accurate simulation, so VHDL simulation vendors were forced to invent their own proprietary data
types using syntactically correct, but non-standard, enumerated types.

IEEE 1164 replaces these proprietary data types (which include systems having four, seven, or even
thirteen unique values) with a standard data type having nine values, as shown below:

Value Description

'U' Uninitialized

'X' Unknown

'0' Logic 0 (driven)

'1' Logic 1 (driven)

'Z' High impedance

'W' Weak 1

'L' Logic 0 (read)

'H' Logic 1 (read)

'-' Don't-care

These nine values make it possible to accurately model the behavior of a digital circuit during
simulation. For synthesis users, the standard has additional benefits for describing circuits that involve
output enables, as well as for specifying don't-care logic that can be used to optimize the combinational
logic requirements of a circuit.

Advantages of IEEE 1164
There are many compelling reasons to adopt IEEE Standard 1164 for all of your design efforts and to
use it as a standard data type for all system interfaces. For simulation purposes, the standard logic
data types allow you to apply values other than '0' or '1' as inputs and view the results. This capability
could be used, for example, to verify that an input with an unknown (uninitialized or don't-care) value
does not cause the circuit to behave in an unexpected manner. The resolved standard logic data types
can be used to model the behavior of multiple drivers in your circuit. You might use these types to
model, for example, the behavior of a three-state bus driver.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 53

The most important reason to use standard logic data types is portability: if you will be interfacing to
other components during simulation (such as those obtained from third party simulation model
providers) or moving your design description between different simulation environments, then IEEE
1164 gives you a standard, portable style with which to describe your circuit.

Using the standard logic package
To use the IEEE 1164 standard logic data types, you will need to add at least two statements to your
VHDL source files. These statements (shown below) cause the IEEE 1164 standard library (named
ieee) to be loaded and its contents (the std_logic_1164 package) made visible:

library ieee;

use ieee.std_logic_1164.all;

In most design descriptions, you will place these two statements at the top of your source file, and
repeat them as needed prior to subsequent design units (entity and architecture pairs) in the file. If your
source file includes more than one design unit, you need to repeat the use statement just prior to each
design unit in order to make the contents of the standard library visible to each design unit, as shown
below:

library ieee;

use ieee.std_logic_1164.all;

package my_package is

 . . .
end my_package;

use ieee.std_logic_1164.all;

entity first_one is

 . . .
end first_one;

use ieee.std_logic_1164.all;

architecture structure of first_one is

 . . .
end structure;

use ieee.std_logic_1164.all;

entity second_one is

 . . .
end second_one;

Once you have included the ieee library and made the std_logic_1164 package visible in your design
description, you can make use of the data types, operators and functions provided for you as a part of
the standard.

VHDL Language Reference

54 TR0114 (v1.1) May 20, 2005

There are two fundamental data types provided for you in the std_logic_1164 package. These data
types, std_logic and std_ulogic, are enumerated types defined with nine symbolic (single character)
values. The following definition of std_ulogic is taken directly from the IEEE 1164 standard:

type std_ulogic is ('U', -- Uninitialized

 'X', -- Forcing Unknown

 '0', -- Forcing 0

 '1', -- Forcing 1

 'Z', -- High Impedance

 'W', -- Weak Unknown

 'L', -- Weak 0

 'H', -- Weak 1

 '-' -- Don't care

);

The std_ulogic data type is an unresolved type, meaning that it is illegal for two values (such as '0' and
'1', or '1' and 'Z') to be simultaneously driven onto a signal of type std_ulogic. If you are not describing a
circuit that will be driving different values onto a wire (as you might in the case of a bus interface), then
you might want to use the std_ulogic data type to help catch errors (such as incorrectly specified,
overlapping combinational logic) in your design description. If you are describing a circuit that involves
multiple values being driven onto a wire, then you will need to use the type std_logic. Std_logic is a
resolved type based on std_ulogic. Resolved types are declared with resolution functions. Resolution
functions define the resulting behavior when an object is driven with multiple values simultaneously.

When using either of these data types, you will use them as one-for-one replacements for the built-in
type bit. The following example shows how you might use the std_logic data type to describe a simple
NAND gate coupled to an output enable:

library ieee;

use ieee.std_logic_1164.all;

entity nandgate is

 port (A, B, OE: in std_logic; Y: out std_logic);

end nandgate;

architecture arch1 of nandgate is

 signal n: std_logic;

begin

 n <= not (A and B);

 Y <= n when OE = '0' else 'Z';

end arch1;

As written, it is not actually necessary for this circuit to be described using the resolved type std_logic
for correct simulation. Operated as a stand-alone circuit, the output Y will never be driven with two

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 55

different values. When connected through hierarchy into a larger circuit, however, it is highly likely that
such a situation will occur, and std_logic will thus be required.

Std_logic_vector and Std_ulogic_vector
In addition to the single-bit data types std_logic and std_ulogic, IEEE Standard 1164 includes array
types corresponding to each of these types. Both std_logic_vector and std_ulogic_vector are defined in
the std_logic_1164 package as unbounded arrays similar to the built-in type bit_vector. In practice, you
will probably use std_logic_vector or std_ulogic_vector with an explicit width, or you will use a subtype
to create a new data type based on std_logic_vector or std_ulogic_vector of the width required. The
following sample design description uses a subtype (defined in an external package) to create an 8-bit
array based on std_ulogic_vector:

library ieee;

use ieee.std_logic_1164.all;

package my_types is

 subtype std_byte is std_ulogic_vector(7 downto 0);

end my_types;

use ieee.std_logic_1164.all;

entity shiftl is

 port (DataIN: in std_byte; DataOUT: out std_byte; Err: out std_ulogic);

end shiftl;

architecture arch1 of shiftl is

 signal n: std_logic;

begin

 DataOUT <= DataIN(DataIN'left - 1 downto 0) & '0'; -- Shift left one
bit

 Err <= DataIN(DataIN'left); -- Check for overflow
end arch1;

In this example (an 8-bit shifter), the subtype std_byte is defined in terms of std_ulogic_vector and
can be used to replace std_ulogic_vector(7 downto 0) throughout the design description. The
circuit is described in such a way that the width of the shifter is dependent only on the width of the type
std_byte, so it is easy to modify the width of the circuit later.

Notes
VHDL has special visibility rules for architectures: it is not necessary to place a use statement prior to
an architecture declaration if the corresponding entity declaration includes a use statement. In the first
example above, the use statement appearing prior to the architecture structure is not actually
needed and could be omitted.

VHDL Language Reference

56 TR0114 (v1.1) May 20, 2005

Type conversion and standard logic
If you need to describe operations such as counters that are not directly supported in the standard logic
data types, you will almost certainly have to make use of type conversion functions to convert the
standard logic data types at your system interfaces to types such as integers that support such
operations.

Type conversion functions are functions that accept an object of one data type and return the
equivalent data value represented as a different data type. Some type conversion functions are
provided in the IEEE 1164 std_logic_1164 package (functions to convert between std_logic_vector and
bit_vector, for example), but no functions are provided in that package to convert between standard
logic data types and numeric data types such as integers.

Arithmetic circuits (such as adders and counters) are common elements of modern digital systems, and
of design descriptions intended for synthesis. So what do you do if you want to use standard logic data
types and describe arithmetic operations? There are actually a number of possible solutions to this
problem.

The first solution is to write your own synthesizable type conversion functions, so that you can translate
between standard logic values that you will use for your system interfaces (such as the ports for your
entities) and the internal numeric type signals and variables you will need to describe your arithmetic
function. This is actually a rather poor solution, as it can be quite difficult (perhaps impossible) to write
a general-purpose (meaning width-independent) type conversion function that your synthesis tool can
handle.

The second solution is to make use of custom type conversion functions or data types that have been
provided by your synthesis vendor for use with their tool. An example of such a method (using the
std_logic_arith package provided by Synopsys) is shown below:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity COUNT16 is

 port (Clk,Rst,Load: in std_logic;

 Data: in std_logic_vector(3 downto 0);

 Count: out std_logic_vector(3 downto 0)

);
end COUNT16;

architecture COUNT16_A of COUNT16 is

begin

 process(Rst,Clk)

 -- The unsigned integer type is defined in synopsys.vhd...
 variable Q: unsigned (3 downto 0);

 begin

 if Rst = '1' then

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 57

 Q := "0000";
 elsif rising_edge(Clk) then
 if Load = '1' then
 for i in 3 downto 0 loop
 Q(i) := Data(i);
 end loop;
 elsif Q = "1111" then
 Q := "0000";
 else
 Q := Q + "0001";
 end if;
 end if;
 Count <= conv_std_logic_vector(Q,Data'length);
 end process;
end COUNT16_A;

In this example, the conv_std_logic_vector function has been provided in the
std_logic_arith package, which was supplied by a synthesis vendor (in this case, Synopsys).

Using synthesis tool-specific packages such as std_logic_arith can be quite convenient, but may result
in a non-portable design description. (This is particularly true if you use tool-specific type conversion
functions, which often have completely different naming conventions and function parameters, and are
typically incompatible with synthesis tools other than those they were originally written for.)

The best solution is to use the IEEE 1076.3 standard numeric data types.

Standard logic data types
This section describes in detail the contents of the IEEE 1164 Standard Logic package std_logic_1164.
The std_logic_1164 package is compiled into a library named ieee, and includes the following data
type and function definitions:

Type Std_ulogic
Type std_ulogic is intended to represent a single wire that can have various logical (and metalogical)
values. Std_ulogic is the base type for other IEEE 1164 (and related) standard types, including
std_logic, std_logic_vector, signed and unsigned. Std_ulogic has the following definition:

type std_ulogic is ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

VHDL Language Reference

58 TR0114 (v1.1) May 20, 2005

The std_ulogic data type is an enumerated type similar is usage to the bit data type provided in the
standard (1076) library. Std_ulogic is an unresolved type.

Type Std_ulogic_vector
Type std_ulogic_vector is intended to represent a collection of wires, or a bus of arbitrary width.
Std_ulogic_vector has the following definition:

type std_ulogic_vector is array (natural range <>) of std_ulogic;

Std_ulogic_vector is an unconstrained array of std_ulogic, and is analogous to the standard type
bit_vector.

Type Std_logic
Type std_logic is a resolved type based on std_ulogic, and has the following definition:

subtype std_logic is resolved std_ulogic;

In the case of multiple drivers, the nine values of std_logic are resolved to values as indicated in the
chart below.

 U X 0 1 Z W L H -

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 1 0 0 0 0 X

1 U X X X 1 1 1 1 X

Z U X 0 1 Z W L H X

W U X 0 1 W W W W X

L U X 0 1 L W L W X

H U X 0 1 H W W H X

- U X X X X X X X X

Type Std_logic_vector
Std_logic_vector is an unconstrained array of std_logic:

type std_logic_vector is array (natural range <>) of std_logic;

Subtypes Based on Std_ulogic
subtype X01 is resolved std_ulogic range 'X' to '1'; -- ('X','0','1')

subtype X01Z is resolved std_ulogic range 'X' to 'Z'; -- ('X','0','1','Z')

subtype UX01 is resolved std_ulogic range 'U' to '1'; -- ('U','X','0','1')

subtype UX01Z is resolved std_ulogic range 'U' to 'Z'; --
('U','X','0','1','Z')

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 59

The X01, X01Z, UX01, and UX01Z subtypes are used within the std_logic_1164 package to simplify
various operations on standard logic data, and may also be used when you have a need for 3-, 4-, or 5-
valued logic systems.

Standard logic operators
The following operators are defined for types std_ulogic, std_logic, std_ulogic_vector and
std_logic_vector:

Logical Operators

function "and" (l : std_ulogic; r : std_ulogic) return UX01;

function "nand" (l : std_ulogic; r : std_ulogic) return UX01;

function "or" (l : std_ulogic; r : std_ulogic) return UX01;

function "nor" (l : std_ulogic; r : std_ulogic) return UX01;

function "xor" (l : std_ulogic; r : std_ulogic) return UX01;

function "xnor" (l : std_ulogic; r : std_ulogic) return ux01;

function "not" (l : std_ulogic) return UX01;

Array Logical Operators

function "and" (l, r : std_logic_vector) return std_logic_vector;

function "and" (l, r : std_ulogic_vector) return std_ulogic_vector;

function "nand" (l, r : std_logic_vector) return std_logic_vector;

function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector;

function "or" (l, r : std_logic_vector) return std_logic_vector;

function "or" (l, r : std_ulogic_vector) return std_ulogic_vector;

function "nor" (l, r : std_logic_vector) return std_logic_vector;

function "nor" (l, r : std_ulogic_vector) return std_ulogic_vector;

function "xor" (l, r : std_logic_vector) return std_logic_vector;

function "xor" (l, r : std_ulogic_vector) return std_ulogic_vector;

function "xnor" (l, r : std_logic_vector) return std_logic_vector;

function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector;

function "not" (l : std_logic_vector) return std_logic_vector;

function "not" (l : std_ulogic_vector) return std_ulogic_vector;

Standard logic type conversions
Type Conversions
The std_logic_1164 package includes a variety of type conversion functions to help convert data
between 1076 standard data types (bit and bit_vector) and IEEE 1164 standard logic data types:

function To_bit (s : std_ulogic; xmap : bit := '0') return bit;

VHDL Language Reference

60 TR0114 (v1.1) May 20, 2005

function To_bitvector (s : std_logic_vector ; xmap : bit := '0') return
bit_vector;
function To_bitvector (s : std_ulogic_vector; xmap : bit := '0') return
bit_vector;
function To_StdULogic (b : bit) return std_ulogic;

function To_StdLogicVector (b : bit_vector) return std_logic_vector;

function To_StdLogicVector (s : std_ulogic_vector) return
std_logic_vector;
function To_StdULogicVector (b : bit_vector) return std_ulogic_vector;

function To_StdULogicVector (s : std_logic_vector) return
std_ulogic_vector;

Strength Stripping Functions
The strength stripping functions convert the 9-valued types std_ulogic and std_logic to the 3-, 4-, and
5-valued types (X01, X01Z, UX01 and UX01Z), converting strength values ('H', 'L', and 'W') to their '0'
and '1' equivalents.

function To_X01 (s : std_logic_vector) return std_logic_vector;

function To_X01 (s : std_ulogic_vector) return std_ulogic_vector;

function To_X01 (s : std_ulogic) return X01;

function To_X01 (b : bit_vector) return std_logic_vector;

function To_X01 (b : bit_vector) return std_ulogic_vector;

function To_X01 (b : bit) return X01;

function To_X01Z (s : std_logic_vector) return std_logic_vector;

function To_X01Z (s : std_ulogic_vector) return std_ulogic_vector;

function To_X01Z (s : std_ulogic) return X01Z;

function To_X01Z (b : bit_vector) return std_logic_vector;

function To_X01Z (b : bit_vector) return std_ulogic_vector;

function To_X01Z (b : bit) return X01Z;

function To_UX01 (s : std_logic_vector) return std_logic_vector;

function To_UX01 (s : std_ulogic_vector) return std_ulogic_vector;

function To_UX01 (s : std_ulogic) return UX01;

function To_UX01 (b : bit_vector) return std_logic_vector;

function To_UX01 (b : bit_vector) return std_ulogic_vector;

function To_UX01 (b : bit) return UX01;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 61

Edge detection and other functions
Edge Detection Functions
The edge detection functions rising_edge() and falling_edge() provide a concise, portable way to
describe the behavior of an edge-triggered device such as a flip-flop:

function rising_edge (signal s : std_ulogic) return boolean;

function falling_edge (signal s : std_ulogic) return boolean;

Miscellaneous Checking Functions
The following functions can be used to determine if an object or literal is a don't-care, which, for this
purpose, is defined as any of the five values 'U', 'X', 'Z', 'W' or '-':

function Is_X (s : std_ulogic_vector) return boolean;

function Is_X (s : std_logic_vector) return boolean;

function Is_X (s : std_ulogic) return boolean;

Standard 1076.3
IEEE Standard 1076.3 (the numeric standard) was developed to help synthesis tool users and vendors
by providing standard, portable data types and operations for numeric data, and by providing more
clearly defined meaning for the nine values of the IEEE 1164 std_ulogic and std_logic data types.

IEEE Standard 1076.3 defines the package numeric_std that allows the use of arithmetic operations on
standard logic (std_logic and std_logic_vector) data types. (The 1076.3 standard also defines
arithmetic forms of the bit and bit_vector data types in a package named numeric_bit, but this
alternative package is not described here.)

The numeric_std package defines the numeric types signed and unsigned and corresponding
arithmetic operations and functions based on the std_logic (resolved) data type. The package was
designed for use with synthesis tools, and therefore includes additional functions (such as std_match)
that simplify the use of don't-cares.

There are two numeric data types, unsigned and signed, declared in the numeric_std package, as
shown below:

type unsigned is array (natural range <>) of std_logic;

type signed is array (natural range <>) of std_logic;

Unsigned represents unsigned integer data in the form of an array of std_logic elements. Signed
represents signed integer data.

Notes

In signed or unsigned arrays, the leftmost bit is treated as the most significant bit. Signed integers are
represented in the signed array in two's complement form.

VHDL Language Reference

62 TR0114 (v1.1) May 20, 2005

Using numeric data types
There are many different applications of the IEEE 1076.3 numeric data types, operators and functions.
The following example demonstrates how the unsigned type might be used to simplify the description
of a counter:

-- COUNT16: 4-bit counter.

--
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity COUNT16 is

 port (Clk,Rst,Load: in std_logic;

 Data: in std_logic_vector (3 downto 0);

 Count: out std_logic_vector (3 downto 0)

);
end COUNT16;

architecture COUNT16_A of COUNT16 is

 signal Q: unsigned (3 downto 0);

 constant MAXCOUNT: unsigned (3 downto 0) := "1111";

begin

 process(Rst,Clk)

 begin

 if Rst = '1' then

 Q <= (others => '0');

 elsif rising_edge(Clk) then

 if Load = '1' then

 Q <= UNSIGNED(Data); -- Type conversion
 elsif Q = MAXCOUNT then

 Q <= (others => '0');

 else

 Q <= Q + 1;
 end if;

 end if;

 Count <= STD_LOGIC_VECTOR(Q); -- Type conversion
 end process;

end COUNT16_A;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 63

In this example, the type unsigned is used within the architecture to represent the counter data. The
add operation ('+') is defined for type unsigned by the 1076-3 standard (in library numeric_std) so the
counter can be easily described. Because the unsigned and std_logic_vector data types share the
same element type (std_logic), conversion between these types is straightforward, as shown.

Numeric standard operators

Arithmetic operators
function "abs" (ARG: signed) return signed;

function "-" (ARG: signed) return signed;

function "+" (L, R: unsigned) return unsigned;

function "+" (L, R: signed) return signed;

function "+" (L: unsigned; R: natural) return unsigned;

function "+" (L: natural; R: unsigned) return unsigned;

function "+" (L: integer; R: signed) return signed;

function "+" (L: signed; R: integer) return signed;

function "-" (L, R: unsigned) return unsigned;

function "-" (L, R: signed) return signed;

function "-" (L: unsigned;R: natural) return unsigned;

function "-" (L: natural; R: unsigned) return unsigned;

function "-" (L: signed; R: integer) return signed;

function "-" (L: integer; R: signed) return signed;

function "*" (L, R: unsigned) return unsigned;

function "*" (L, R: signed) return signed;

function "*" (L: unsigned; R: natural) return unsigned;

function "*" (L: natural; R: unsigned) return unsigned;

function "*" (L: signed; R: integer) return signed;

function "*" (L: integer; R: signed) return signed;

function "/" (L, R: unsigned) return unsigned;

function "/" (L, R: signed) return signed;

function "/" (L: unsigned; R: natural) return unsigned;

function "/" (L: natural; R: unsigned) return unsigned;

function "/" (L: signed; R: integer) return signed;

function "/" (L: integer; R: signed) return signed;

function "rem" (L, R: unsigned) return unsigned;

function "rem" (L, R: signed) return signed;

function "rem" (L: unsigned; R: natural) return unsigned;

function "rem" (L: natural; R: unsigned) return unsigned;

VHDL Language Reference

64 TR0114 (v1.1) May 20, 2005

function "rem" (L: signed; R: integer) return signed;

function "rem" (L: integer; R: signed) return signed;

function "mod" (L, R: unsigned) return unsigned;

function "mod" (L, R: signed) return signed;

function "mod" (L: unsigned; R: natural) return unsigned;

function "mod" (L: natural; R: unsigned) return unsigned;

function "mod" (L: signed; R: integer) return signed;

function "mod" (L: integer; R: signed) return signed;

Numeric logical operators
function "not" (L: unsigned) return unsigned;

function "and" (L, R: unsigned) return unsigned;

function "or" (L, R: unsigned) return unsigned;

function "nand" (L, R: unsigned) return unsigned;

function "nor" (L, R: unsigned) return unsigned;

function "xor" (L, R: unsigned) return unsigned;

function "xnor" (L, R: unsigned) return unsigned;

function "not" (L: signed) return signed;

function "and" (L, R: signed) return signed;

function "or" (L, R: signed) return signed;

function "nand" (L, R: signed) return signed;

function "nor" (L, R: signed) return signed;

function "xor" (L, R: signed) return signed;

function "xnor" (L, R: signed) return signed;

Relational operators
function ">" (L, R: unsigned) return boolean;

function ">" (L, R: signed) return boolean;

function ">" (L: natural; R: unsigned) return boolean;

function ">" (L: integer; R: signed) return boolean;

function ">" (L: unsigned; R: natural) return boolean;

function ">" (L: signed; R: integer) return boolean;

function "<" (L, R: unsigned) return boolean;

function "<" (L, R: signed) return boolean;

function "<" (L: natural; R: unsigned) return boolean;

function "<" (L: integer; R: signed) return boolean;

function "<" (L: unsigned; R: natural) return boolean;

function "<" (L: signed; R: integer) return boolean;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 65

function "<=" (L, R: unsigned) return boolean;

function "<=" (L, R: signed) return boolean;

function "<=" (L: natural; R: unsigned) return boolean;

function "<=" (L: integer; R: signed) return boolean;

function "<=" (L: unsigned; R: natural) return boolean;

function "<=" (L: signed; R: integer) return boolean;

function ">=" (L, R: unsigned) return boolean;

function ">=" (L, R: signed) return boolean;

function ">=" (L: natural; R: unsigned) return boolean;

function ">=" (L: integer; R: signed) return boolean;

function ">=" (L: unsigned; R: natural) return boolean;

function ">=" (L: signed; R: integer) return boolean;

function "=" (L, R: unsigned) return boolean;

function "=" (L, R: signed) return boolean;

function "=" (L: natural; R: unsigned) return boolean;

function "=" (L: integer; R: signed) return boolean;

function "=" (L: unsigned; R: natural) return boolean;

function "=" (L: signed; R: integer) return boolean;

function "/=" (L, R: unsigned) return boolean;

function "/=" (L, R: signed) return boolean;

function "/=" (L: natural; R: unsigned) return boolean;

function "/=" (L: integer; R: signed) return boolean;

function "/=" (L: unsigned; R: natural) return boolean;

function "/=" (L: signed; R: integer) return boolean;

Shift and rotate functions
function shift_left (ARG: unsigned; COUNT: natural) return unsigned;

function shift_right (ARG: unsigned; COUNT: natural) return unsigned;

function shift_left (ARG: signed; COUNT: natural) return signed;

function shift_right (ARG: signed; COUNT: natural) return signed;

function rotate_left (ARG: unsigned; COUNT: natural) return unsigned;

function rotate_right (ARG: unsigned; COUNT: natural) return unsigned;

function rotate_left (ARG: signed; COUNT: natural) return signed;

function rotate_right (ARG: signed; COUNT: natural) return signed;

function "sll" (ARG: unsigned; COUNT: integer) return unsigned;

function "sll" (ARG: signed; COUNT: integer) return signed;

function "srl" (ARG: unsigned; COUNT: integer) return unsigned;

VHDL Language Reference

66 TR0114 (v1.1) May 20, 2005

function "srl" (ARG: signed; COUNT: integer) return signed;
function "rol" (ARG: unsigned; COUNT: integer) return unsigned;
function "rol" (ARG: signed; COUNT: integer) return signed;
function "ror" (ARG: unsigned; COUNT: integer) return unsigned;
function "ror" (ARG: signed; COUNT: integer) return signed;

Numeric resize functions
The resize functions are used to convert a fixed-sized signed or unsigned array to a new (larger or
smaller) size. If the resulting array is larger than the input array, the result is padded with '0's. In the
case of a signed array, the sign bit is extended to the least significant bit.

function resize (ARG: signed; NEW_SIZE: natural) return signed;
function resize (ARG: unsigned; NEW_SIZE: natural) return unsigned;
Numeric type conversion functions
The numeric type conversion functions are used to convert between integer data types and signed and
unsigned data types.

function to_integer (ARG: unsigned) return natural;

function to_integer (ARG: signed) return integer;

function to_unsigned (ARG, SIZE: natural) return unsigned;

function to_signed (ARG: integer; SIZE: natural) return signed;
Numeric matching functions
The matching functions (std_match) are used to determine if two values of type std_logic are logically
equivalent, taking into consideration the semantic values of the 'X' (uninitialized) and '-' (don't-care)
literal values. The following table (derived from the match_table constant declaration found in the
numeric_std package) defines the matching of all possible combinations of the std_logic enumerated
values:

 U X 0 1 Z W L H -

U F F F F F F F F T

X F F F F F F F F T

0 F F T F F F T F T

1 F F F T F F F T T

Z F F F F F F F F T

W F F F F F F F F T

L F F T F F F T F T

H F F F T F F F T T

- T T T T T T T T T

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 67

function std_match (L, R: STD_ULOGIC) return boolean;

function std_match (L, R: unsigned) return boolean;

function std_match (L, R: signed) return boolean;

function std_match (L, R: std_logic_vector) return boolean;

function std_match (L, R: STD_ULOGIC_vector) return boolean;

Numeric translation functions
The numeric translation functions convert the nine std_logic values to numeric binary values ('0' or '1')
for use in signed and unsigned arithmetic operations. These translation functions convert the values of
'L' and 'H' to '0' and '1', respectively. Any other values ('U', 'X', 'Z', '-', or 'W') result in a warning error
(assertion) being generated.

function to_01 (S: unsigned; XMAP: std_logic := '0') return unsigned;

function to_01 (S: signed; XMAP: std_logic := '0') return signed;

VHDL Language Reference

68 TR0114 (v1.1) May 20, 2005

Concurrent Statements
The following links are to more detailed topics within the area of concurrent statements. These include
a look at the concept of concurrency as it is implemented in the VHDL language and in VHDL
simulators; an exploration of some of the concurrent language features of VHDL in more detail and
how combinational and registered logic can be described using these features; a look at how timing
delays are annotated to concurrent assignments in VHDL, so you will have a better understanding of
how simulation models are constructed.

The concurrent area
In VHDL, there is only one place where you will normally enter concurrent statements. This place, the
concurrent area, is found between the begin and end statements of an architecture declaration. The
following VHDL example shows where the concurrent area of a VHDL architecture is located:

architecture arch1 of my_circuit is

 signal Reset, DivClk: std_logic;

 constant MaxCount: std_logic_vector(15 downto 0) := "10001111";

 component count port (Clk, Rst: in std_logic;

 Q: out std_logic_vector(15 downto
0));
begin

 Reset <= '1' when Qout = MaxCount else '0';

 CNT1: count port map(GClk, Reset, DivClk);

 Control: process(DivClk)

 begin

 . . .
 end process;

 . . .
end arch1;

All statements within the concurrent area are considered to be parallel in their execution and of equal
priority and importance. Processes also obey this rule, executing in parallel with other assignments and
processes appearing in the concurrent area.

There is no order dependency to statements in the concurrent area, so the following architecture
declaration:

architecture arch1 of my_circuit is

 signal A, B, C: std_logic_vector(7 downto 0);

 constant Init: std_logic_vector(7 downto 0) := "01010101";

begin

 A <= B and C;

 B <= Init when Select = '1' else C;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 69

 C <= A and B;

end arch1;

is exactly equivalent to:

architecture arch2 of my_circuit is

 signal A, B, C: std_logic_vector(7 downto 0);

 constant Init: std_logic_vector(7 downto 0) := "01010101";

begin

 C <= A and B;

 A <= B and C;

 B <= Init when Select = '1' else C;

end arch2;

The easiest way to understand this concept of concurrency is to think of concurrent VHDL statements
as a kind of netlist, in which the various assignments being made are nothing more than connections
between different types of objects.

If you think of the signals, constants, components, literals – and even processes – available in
concurrent VHDL statements as distinct objects (such as you might find on a schematic or block
diagram), and think of operations (such as and, not, and when-else) and assignments as logic gates
and wiring specifications, respectively, then you will have no trouble understanding how VHDL's
concurrent statements can be mapped to actual digital logic.

Concurrent signal assignments
The most common and simple concurrent statements you will write in VHDL are concurrent signal
assignments. Concurrent signal assignments specify the logical relationships between different signals
in a digital system.

If you have used PLD-oriented design languages (such as PALASM, ABEL, CUPL or Altera's AHDL),
then concurrent signal assignments will be quite familiar to you. Just like the Boolean equations that
you write using a PLD language, concurrent signal assignments in VHDL describe logic that is
inherently parallel.

Because all signal assignments in your design description are concurrent, there is no relevance to the
order in which the assignments are made within the concurrent area of the architecture.

In most cases, you will use concurrent signal assignments to describe either combinational logic (using
logic expressions of arbitrary complexity), or you will use them to describe the connections between
lower-level components. In some cases (though not typically for designs that will be synthesized) you
will use concurrent signal assignments to describe registered logic as well.

The following example includes two simple concurrent signal assignments that represent NAND and
NOR operations:

architecture arch3 of nand_circuit is

 signal A, B: std_logic;

 signal Y1, Y2: std_logic;

VHDL Language Reference

70 TR0114 (v1.1) May 20, 2005

begin

 Y1 <= not (A and B);

 Y2 <= not (A or B);

end arch3;

In this example, there is no significance to the order in which the two assignments have been made.
Also, keep in mind that the two signals being assigned (Y1 and Y2) could just as easily have been
ports of the entity rather than signals declared in the architecture. In all cases, signals declared locally
(within an architecture, for example) can be used in exactly the same ways as can ports of the
corresponding entity. The only difference between ports and locally-declared signals is that ports have
a direction, or mode (in, out or inout), limiting whether they can have values assigned to them (in the
case of in), or whether they can be read as inputs (in the case of out). If a port is declared as mode
out, its value cannot be read. It can only be assigned a value. A port of mode in is the opposite; it can
be read, but it cannot be assigned a value. A port of mode inout has both capabilities.

Conditional signal assignment
A conditional signal assignment is a special form of signal assignment, similar to the if-then-else
statements found in software programming languages, that allows you to describe a sequence of
related conditions under which one or more signals are assigned values. The following example (a
simple multiplexer) demonstrates the basic form of a conditional assignment:

entity my_mux is

 port (Sel: in std_logic_vector (0 to 1);

 A, B, C, D: in std_logic_vector (0 to 3);

 Y: out std_logic_vector (0 to 3));

end my_mux;

architecture mux1 of my_mux is

begin

 Y <= A when Sel = "00" else

 B when Sel = "01" else

 C when Sel = "10" else

 D when others;

end mux1;

A conditional signal assignment consists of an assignment to one output (or a collection of outputs,
such as an array of any type) and a series of conditional when statements, as shown. To ensure that
all conditions are covered, you can use a terminating when others clause, as was done for the
multiplexer description above.

The conditional signal assignment also provides a concise method of describing a list of conditions that
have some priority. In the case of the multiplexer just described, there is no priority required or
specified, since the four conditions (the possible values of the 2-bit input Sel) are all mutually
exclusive. In some design descriptions, however, the priority implied by a series of when-else

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 71

statements can cause some confusion (and additional logic being generated). For this reason, you
might want to use a selected signal assignment as an alternative.

Notes
It is very important that all conditions in a conditional assignment are covered, as unwanted latches can
be easily generated from synthesis for those conditions that are not covered. In the preceding
multiplexer example, you might be tempted to replace the clause D when others with D when Sel
= "11" (to improve readability). This would not be correct, however, because the data type being
used in the design (std_logic_vector) has nine possible values for each bit. This means that there are
actually 81 possible unique values that the input Sel could have at any given time, rather than four.

Selected signal assignment
A selected signal assignment is similar to a conditional signal assignment but differs in that the input
conditions specified have no implied priority. The following is an example of a selected signal
assignment:

entity my_mux is

 port (Sel: in std_logic_vector (0 to 1);

 A, B, C, D: in std_logic_vector (0 to 3);

 Y: out std_logic_vector (0 to 3));

end my_mux;

architecture mux1 of my_mux is

begin

 with Sel select

 Y <= A when "00",

 B when "01",

 C when “10",

 D when others;

end mux1;

In this simple multiplexer example, the selected signal assignment has exactly the same function as
the conditional signal assignment presented earlier. This is not always the case, however, and you
should carefully evaluate which type of assignment is most appropriate for a given application.

Conditional vs. Selected signal assignment
How to choose between a conditional assignment and a selected assignment? Consider this: a
conditional assignment always enforces a priority on the conditions. For example, the conditional
expression:

Q1 <= "01" when A = '1' else

 "10" when B = '1' else

 "11" when C = '1' else

 "00";

VHDL Language Reference

72 TR0114 (v1.1) May 20, 2005

is identical to the selected assignment:

with std_logic_vector'(A,B,C) select

 Q2 <= "01" when "100",

 "01" when "101",

 "01" when "110",

 "01" when "111",

 "10" when "010",

 "10" when "011",

 "11" when "001",

 "00" when others;

Notice that input A takes priority. In the conditional assignment, that priority is implied by the ordering of
the expressions. In the selected assignment, you must specify all possible conditions, so there can be
no priority implied.

Why is this important for synthesis? Consider a circuit in which you know in advance that only one of
the three inputs (A, B, or C) could ever be active at the same time. Or perhaps you don't care what the
output of your circuit is under the condition where more than one input is active. In such cases, you can
reduce the amount of logic required for your design by eliminating the priority implied by the conditional
expression. You could instead write your description as:

with std_logic_vector'(A,B,C) select

 Q2 <= "01" when "100",

 "10" when "010",

 "11" when "001",

 "00" when others;

This version of the description will, in all likelihood, require less logic to implement than the earlier
version. This kind of optimization can save dramatic amounts of logic in larger designs.

In summary, while a conditional assignment may be more natural to write, a selected signal
assignment may be preferable to avoid introducing additional, unwanted logic in your circuit.

Notes
You must include all possible conditions in a selected assignment. If not all conditions are easily
specified, you can use the others clause as shown above to provide a default assignment.

The selection expressions may include ranges and multiple values. For example, you could specify
ranges for a bit_vector selection expression as follows:

with Address select
 CS <= SRAM when 0x"0000" to 0x"7FFF",
 PORT when 0x"8000" to 0x"81FF",
 UART when 0x"8200" to 0x"83FF",
 PROM when others;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 73

VHDL `93 adds the following feature to the selected signal assignment: You can use the keyword
unaffected to specify that the output does not change under one or more conditions. For example, a
multiplexer with two selector inputs could be described as:

with Sel select

 Y <= A when "00",

 B when "01",

 C when "10",

 unaffected when others;

The preceding multiplexer description may result in a latch being generated from synthesis. This is
because the synthesized circuit will have to maintain the value of the output Y when the value of input
Sel is "11".

Procedure calls
Procedures may be called concurrently within an architecture. When procedures are called
concurrently, they must appear as independent statements within the concurrent area of the
architecture.

You can think of procedures in the same way you think of processes within an architecture: as
independent sequential programs that execute whenever there is a change (an event) on any of their
inputs. The advantage of a procedure over a process is that the body of the procedure (its sequential
statements) can be kept elsewhere (in a package, for example) and used repeatedly throughout the
design.
In the following example, the procedure dff is called within the concurrent area of the architecture:

architecture shift2 of shift is

 signal D,Qreg: std_logic_vector(0 to 7);

begin

 D <= Data when (Load = '1') else

 Qreg(1 to 7) & Qreg(0);

 dff(Rst, Clk, D, Qreg);

 Q <= Qreg;
end shift2;

Generate statements
Generate statements are provided as a convenient way to create multiple instances of concurrent
statements, most typically component instantiation statements. There are two basic varieties of
generate statements.

The for-generate statement
The following example shows how you might use a for-generate statement to create four instances of
a lower-level component (in this case a RAM block):

VHDL Language Reference

74 TR0114 (v1.1) May 20, 2005

architecture generate_example of my_entity is

 component RAM16X1

 port(A0, A1, A2, A3, WE, D: in std_logic;

 O: out std_logic);

 end component;

begin

 . . .
 RAMGEN: for i in 0 to 3 generate

 RAM: RAM16X1 port map (. . .);

 end generate;

 . . .
end generate_example;

When this generate statement is evaluated, the VHDL compiler will generate four unique instances of
component RAM16X1. Each instance will have a unique name that is based on the instance label
provided (in this case RAM) and the index value.

For-generate statements can be nested, so it is possible to generate multi-dimensional arrays of
component instances or other concurrent statements.

The if-generate statement
The if-generate statement is most useful when you need to conditionally generate a concurrent
statement. A typical example of this occurs when you are generating a series of repetitive statements
or components and need to supply different parameters, or generate different components, at the
beginning or end of the series. The following example shows how a combination of a for-generate
statement and three if-generate statements can be used to describe a 10-bit parity generator
constructed of cascaded exclusive-OR gates:

library ieee;

use ieee.std_logic_1164.all;

entity parity10 is

 port(D: in std_logic_vector(0 to 9);

 ODD: out std_logic);

 constant width: integer := 10;

end parity10;

library gates;

use gates.all;

architecture structure of parity10 is

 component xor2

 port(A,B: in std_logic;

 Y: out std_logic);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 75

 end component;

 signal p: std_logic_vector(0 to width - 2);

begin

 G: for I in 0 to (width - 2) generate

 G0: if I = 0 generate

 X0: xor2 port map(A => D(0), B => D(1), Y => p(0));

 end generate G0;

 G1: if I > 0 and I < (width - 2) generate

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i));

 end generate G1;

 G2: if I = (width - 2) generate

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD);

 end generate G2;

 end generate G;

end structure;

Concurrent processes
Process statements contain sequential statements but are themselves concurrent statements within
an architecture. In most VHDL design descriptions, there are multiple processes that execute
concurrently during simulation and describe hardware that is inherently concurrent in its operation.

In the following example, two processes are used to describe a background clock (process CLOCK)
and a sequence of stimulus inputs in a test bench:

architecture Stim1 of TEST_COUNT4EN is

component COUNT4EN

 port (CLK,RESET,EN : in std_logic;

 COUNT : out std_logic_vector(3 downto 0)

);
end component;

constant CLK_CYCLE : Time := 20 ns;

signal CLK,INIT_RESET,EN : std_logic;

signal COUNT_OUT : std_logic_vector(3 downto 0);

begin

 U0: COUNT4EN port map (CLK=>CLK,RESET=>INIT_RESET,

 EN=>EN, COUNT=>COUNT_OUT);
 process begin

 CLK <= '1';
 wait for CLK_CYCLE/2;

VHDL Language Reference

76 TR0114 (v1.1) May 20, 2005

 CLK <= '0';
 wait for CLK_CYCLE/2;

 end process;

 process begin

 INIT_RESET <= '0'; EN <= '1';
 wait for CLK_CYCLE/3;

 INIT_RESET <= '1';
 wait for CLK_CYCLE;

 INIT_RESET <= '0';
 wait for CLK_CYCLE*10;

 EN <= '0';
 wait for CLK_CYCLE*3;

 EN <= '1';
 wait;

 end process;

end Stim1;

The inter-relationships between multiple processes in a design description can be complex. For the
purpose of understanding concurrency however, you must never assume that any process you write
will be executed in simulation prior to any other process. This means that you cannot count on signals
or shared variables being updated between two processes.

Component instantiations
Component instantiations are statements that reference lower-level components in your design, in
essence creating unique copies (or instances) of those components. A component instantiation
statement is a concurrent statement, so there is no significance to the order in which components are
referenced. You must, however, declare any components that you reference in either the declarative
area of the architecture (before the begin statement) or in an external package that is visible to the
architecture.

The following example demonstrates how component instantiations can be written. In this example,
there are two lower-level components (half_adder and full_adder) that are referenced in
component instantiations to create a total of four component instances. When simulated or
synthesized, the four component instances (A0, A1, A2 and A3) will be processed as four independent
circuit elements. In this example, the two lower-level components half_adder and full_adder
have been declared, right in the architecture. To make your design descriptions more concise, you may
choose to place component declarations in separate packages instead.

library ieee;

use ieee.std_logic_1164.all;

entity adder4 is

 port(A,B: in std_logic_vector(3 downto 0);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 77

 S: out std_logic_vector(3 downto 0);

 Cout: out std_logic);

end adder4;

architecture structure of adder4 is

 component half_adder

 port (A, B: in std_logic; Sum, Carry: out std_logic);

 end component;

 component full_adder

 port (A, B, Cin: in std_logic; Sum, Carry: out std_logic);

 end component;

 signal C: std_logic_vector(0 to 2);

begin

 A0: half_adder port map(A(0), B(0), S(0), C(0));

 A1: full_adder port map(A(1), B(1), C(0), S(1), C(1));

 A2: full_adder port map(A(2), B(2), C(1), S(2), C(2));

 A3: full_adder port map(A(3), B(3), C(2), S(3), Cout);

end structure;

Port and generic mapping
The mapping of ports in a component can be described in one of two ways. The simplest method is
called positional association. Positional association simply maps signals in the architecture (the
actuals) to corresponding ports in the lower-level entity declaration (the formals) by their position in the
port list. When using positional association, you must provide exactly the same number and types of
ports as are declared for the lower-level entity.

Positional association is quick and easy to use, and it is tempting to use this method almost
exclusively. However, there are potential problems with positional association. The most troublesome
problem is the lack of error checking. It is quite easy, for example, to inadvertently reverse the order of
two ports in the list. The result is a circuit that may compile with no errors, but fail to simulate properly.
After the first few times you accidentally swap the reset and clock lines to one of your lower-level
components, you may decide that it is worth the extra typing to provide a more complete specification
of your port mappings. The method you will use in this case is called named association.

Named association is an alternate form of port mapping that includes both the actual and formal port
names in the port map of a component instantiation. (Named association can also be used in other
places, such as in the parameter lists for generics and subprograms.)

An example using named association, for a 4-bit adder, is as follows:

architecture structure of adder4 is

 component half_adder

 port (A, B: in std_logic; Sum, Carry: out std_logic);

 end component;

VHDL Language Reference

78 TR0114 (v1.1) May 20, 2005

 component full_adder

 port (A, B, Cin: in std_logic; Sum, Carry: out std_logic);

 end component;

 signal C: std_logic_vector(0 to 2);

begin

 A0: half_adder port map(A => A(0), B => B(0), Sum => S(0), Carry => C(0));

 A1: full_adder port map(A => A(1), B => B(1), Cin => C(0), Sum => S(1),
Carry => C(1));
 A2: full_adder port map(A => A(2), B => B(2), Cin => C(1), Sum => S(2),
Carry => C(2));
 A3: full_adder port map(A => A(3), B => B(3), Cin => C(2), Sum => S(3),
Carry => Cout);
end structure;

When you specify port mappings using named association, lower-level names (the formal ports of the
component) are written on the left side of the => operator, while the top-level names (the actuals) are
written on the right.

The benefits of named association go beyond simple error checking. Because named association
removes the requirement for any particular order of the ports, you can enter them in whatever order
you want. You can even leave one or more ports unconnected if you have provided default values in
the lower-level component specification.

Because named association is so much more flexible (and less error prone) than positional
association, it is strongly recommend that you get in the habit of typing in the few extra characters
required to use named association.

Generic Mapping
If the lower-level entity being referenced includes generics, you can specify a generic map in addition
to the port map to pass actual generic parameters to the lower-level entity:

architecture timing of adder4 is

 component half_adder

 port (A, B: in std_logic; Sum, Carry: out std_logic);

 end component;

 component full_adder

 port (A, B, Cin: in std_logic; Sum, Carry: out std_logic);

 end component;

 signal C: std_logic_vector(0 to 2);

begin

 A0: half_adder
 generic map(tRise => 1 ns, tFall => 1 ns);

 port map(A => A(0), B => B(0), Sum => S(0), Carry => C(0));

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 79

 A1: full_adder
 generic map(tRise => 1 ns, tFall => 1 ns);

 port map(A => A(1), B => B(1), Cin => C(0), Sum => S(1), Carry =>
C(1));

 A2: full_adder
 generic map(tRise => 1 ns, tFall => 1 ns);

 port map(A => A(2), B => B(2), Cin => C(1), Sum => S(2), Carry =>
C(2));

 A3: full_adder
 generic map(tRise => 1 ns, tFall => 1 ns);

 port map(A => A(3), B => B(3), Cin => C(2), Sum => S(3), Carry =>
Cout);
end timing;

Just as with port maps, generic maps can be written using either positional or named association.

Notes
The rules of VHDL allow you to mix positional and named association in the same port, generic or
parameter list. Doing so has little or no benefit however, and it may confuse other potential users of
your design description.

Delay specifications
VHDL allows signal assignments to include delay specifications, in the form of an after clause. The
after clause allows you to model the behavior of gate and wire delays in a circuit. This is very useful if
you are developing simulation models or if you want to include estimated delays in your synthesizable
design description. The following are two examples of delay specifications associated with signal
assignments:

Y1 <= not (A and B) after 7 ns;

Y2 <= not (A and B) transport after 7 ns;

These two assignments demonstrate the two fundamental types of delay specifications available in
VHDL: inertial and transport.

Inertial delay is intended to model the delay through a gate, in which there is some minimum pulse
length that must be maintained before an event is propagated.

Transport delay, on the other hand, models the delay on a wire, so pulses of any width are propagated.

For design descriptions intended for synthesis, you will probably not bother to use delay specifications
such as these. A circuit produced as a result of synthesis is unlikely to have timing characteristics that
can be accurately predicted (or specified) up front. In fact, all synthesis tools in use as of this writing
ignore the after clause completely. (If you have a general idea of the timing characteristics of your
synthesis target – be it an FPGA chip or a high-complexity ASIC – you can use delay specifications to
improve the accuracy of your initial simulation. Just be aware that anything you annotate prior to
synthesis will be little more than a guess.)

VHDL Language Reference

80 TR0114 (v1.1) May 20, 2005

When you are writing test benches, you will also probably not use after clauses to specify timing of
input events. Instead, you will likely rely on a series of wait statements entered within a process to
accurately specify your test stimulus.
The IEEE 1076-1993 standard added an additional feature called a reject time. For inertial delays (the
default delay type if transport is not specified), a minimum inertial pulse time can be specified as
follows:

Y1 <= reject 3 ns not (A and B) after 7 ns;

In this example, any event greater than 3 ns in width will be propagated to the output. In the absence
of a specified reject time, the specified delay time (in this case 7 ns) is used as the default reject time.

Signal drivers
VHDL includes an elaborate set of rules and language features to resolve situations in which the same
signal is driven to multiple values simultaneously. These situations can be caused unintentionally (by
an incomplete or incorrect design specification), or they may represent a desired circuit condition, such
as a three-state driver connected to a bus, or they may represent a simple output enable used in a
loadable bi-directional register.

To handle such situations, VHDL introduces the concept of a signal driver. A signal driver is a
conceptual circuit that is created for every signal assignment in your circuit. By default, this conceptual
circuit provides a comparison function to ensure that only one driver is active at any given time. The
following architecture demonstrates a circuit description that does not meet this requirement:

architecture arch4 of nand_circuit is

 signal Sel, A, B: std_logic;

 signal Y: std_logic;

begin

 Y <= not (A and B) and Sel;

 Y <= not (A or B) and not Sel;

end arch4;

The intent of this circuit is to provide a single output (Y) that functions either as a NAND gate or as a
NOR gate based on the value of Sel. Unfortunately, each of the two assignments results in a driver
being created, resulting in a multiple-driver situation.
The solution to this, of course, is to completely specify the output Y using only one signal assignment,
as in the following:

architecture arch4 of nand_circuit is

 signal Sel, A, B: std_logic;
 signal Y,Y1,Y2: std_logic;
begin
 Y1 <= not (A and B);
 Y2 <= not (A or B);
 Y <= Y1 and Sel or Y2 and not Sel;
end arch4;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 81

In this example, two intermediate signals have been introduced (Y1 and Y2) and the output Y has been
more completely described as a function of these two values. Another method might be to simply
combine the three assignments into a larger combinational expression

(not (A and B) and Sel or not (A or B) and not Sel

or to use a more concise statement such as a conditional assignment:

architecture arch5 of nand_circuit is

 signal Sel, A, B: std_logic;

 signal Y,Y1,Y2: std_logic;

begin

 Y <= not (A and B) when Sel = '1' else

 not (A or B);

end arch5;

Of course, these simple examples only show how you might resolve multiple driver situations that have
been inadvertently created. You will find that VHDL's signal driver rules can actually help to detect and
correct errors in your design that might otherwise go unnoticed. For situations that are intentional,
however, how can you get around the rules? The answer is a feature of VHDL called a resolution
function. A resolution function is a special type of function that you (or someone else, such as the IEEE
committee that defined the resolved type std_logic) can write to resolve multiple-driver situations for a
specific type. For example, the resolution function for a four-value data type consisting of the values '1',
'0', 'X' (unknown) and 'Z' (high impedance) might have a resolution function that specifies:

• that simultaneous values of '1' and '0' appearing on a signal's drivers will result in an 'X' value,

• that both 'Z' and 'X' can be over-ridden by values of '1' or '0', and

• that 'Z' is over-ridden by 'X'.

For most design descriptions and test benches, you will not need to use resolved types such as these.
(In many synthesis tools, resolution functions are not supported anyway. They serve only to let the
compiler know whether multiple drivers are allowed for an output.)

VHDL Language Reference

82 TR0114 (v1.1) May 20, 2005

Sequential Statements
Sequential VHDL statements allow you to describe the operation, or behavior, of your circuit as a
sequence of related events. Such descriptions are natural for order-dependent circuits such as state
machines and for complex combinational logic that involves some priority of operations. The use of
sequential statements to describe combinational logic implies that the use of the term sequential in
VHDL is somewhat different from the term as it is often used to describe digital logic. Specifically,
sequential statements written in VHDL do not necessarily represent sequential digital logic circuits. It is
possible (and quite common) to write sequential VHDL statements, using processes and subprograms,
to describe what is essentially combinational logic.

Sequential statements are found within processes, functions, and procedures. Sequential statements
differ from concurrent statements in that they have order dependency. This order dependency may or
may not imply a sequential circuit (one involving memory elements).

The Process statement
VHDL's process statement is the primary way you will enter sequential statements. A process
statement, including all declarations and sequential statements within it, is actually considered to be a
single concurrent statement within a VHDL architecture. This means that you can write as many
processes and other concurrent statements as are necessary to describe your design, without worrying
about the order in which the simulator will process each concurrent statement.

Anatomy of a Process

The general form of a process statement is:

process_name: process (sensitivity_list)

 declarations
begin

 sequential_statements
end process;

The easiest way to think of a VHDL process is to relate it to event-driven software – like a program that
executes (in simulation) any time there is an event on one of its inputs (as specified in the sensitivity
list). A process describes the sequential execution of statements that are dependent on one or more
events having occurred. A flip-flop is a perfect example of such a situation. It remains idle, not
changing state, until there is a significant event (either a rising edge on the clock input or an
asynchronous reset event) that causes it to operate and potentially change its state.

Although there is a definite order of operations within a process (from top to bottom), you can think of a
process as executing in zero time. This means that a process can be used to describe circuits
functionally, without regard to their actual timing, and multiple processes can be "executed" in parallel
with little or no concern for which processes complete their operations first.

A process can be thought of as a single concurrent statement written within a VHDL architecture,
extending from the process keyword (or from the optional process name that precedes it) to the
terminating end process keyword pair and semicolon.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 83

The process name (process_name) appearing before the process keyword is optional and can be
used to: (1) identify specific processes that are executing during simulation, and (2) more clearly
distinguish elements such as local variables that may have common names in different processes.
Immediately following the process statement is an optional list of signals enclosed by parentheses.
This list of signals, called the sensitivity list, specifies the conditions under which the process is to
begin executing. When a sensitivity list is associated with a process, any change in the value of any
input in the list will result in immediate execution of the process.

In the absence of a sensitivity list, the process will execute continuously, but must be provided with at
least one wait statement to cause the process to suspend periodically.

The order in which statements are written in a process is significant. You can think of a process as a
kind of software program that is executed sequentially, from top to bottom, each time it is invoked
during simulation. Consider, for example, the following process describing the operation of a counter:

process(Clk)

begin

 if Clk = '1' and Clk'event then

 if Load = '1' then

 Q <= Data_in;
 else

 Q <= Q + 1;
 end if;

 end if;

end process;

When this process is executed, the statements appearing between the begin and end process
statements are executed in sequence. In this example, the first statement is an if test that will
determine if there was a rising edge on the Clk clock input. A second, nested if test determines if the
counter should be loaded with Data_in or incremented, depending on the value of the Load input.

Processes with sensitivity lists

A process with a sensitivity list is executed during simulation whenever an event occurs on any of the
signals in the sensitivity list. An event is defined as any change in value of a signal, such as when a
signal of type Boolean changes from True to False, or when the value of an integer type signal is
incremented or otherwise modified.

Processes that include sensitivity lists are most often used to describe the behavior of circuits that
respond to external stimuli. These circuits, which may be either combinational, sequential (registered),
or a combination of the two, are normally connected with other sub-circuits or interfaces, via signals, to
form a larger system. In a typical circuit application, such a process will include in its sensitivity list all
inputs that have asynchronous behavior. These inputs may include clocks, reset signals, or inputs to
blocks of combinational logic.

The following is an example of a process that includes a sensitivity list. This process describes the
operation of a clocked shift register with an asynchronous reset; note the use of the `event signal
attribute to determine which of the two signals (Clk and Rst) had an event:

VHDL Language Reference

84 TR0114 (v1.1) May 20, 2005

process(Rst, Clk)

begin

 if Rst = '1' then

 Q <= "00000000";
 elsif Clk = '1' and Clk'event then

 if Load = '1' then

 Q <= Data_in;
 else

 Q <= Q(1 to 7) & Q(0);
 end if;

 end if;

end process;

During simulation, whenever there is an event on either Rst or Clk, this process statement will
execute from the begin statement to the end process statement pair. If the Rst input is '1'
(regardless of whether the event that triggered the process execution was Rst or Clk), then the output
Q is set to a reset value of "00000000". If the value of Rst is not '1', then the Clk input is checked
to determine if it has a value of '1' and had an event. This checking for both a value and an event is a
common (and synthesizable) way of detecting transitions, or edges, on signals such as clocks.

After all of the statements in the process have been analyzed and executed, the process is suspended
until a new event occurs on one of the process's sensitivity list entries.

For design descriptions intended for input to synthesis software, you should follow the above example
and write process statements that include sensitivity lists, as this is the most widely used synthesis
convention for registers.

Processes without sensitivity lists

A process that does not include a sensitivity list executes somewhat differently than a process with a
sensitivity list. Rather than executing from the begin statement at the top of the process to the end
process statement, a process with no sensitivity list executes from the beginning of the process to the
first occurrence of a wait statement, then suspends until the condition specified in the wait statement is
satisfied. If the process only includes a single wait statement, the process re-activates when the
condition is satisfied and continues to the end process statement, then begins executing again from
the beginning. If there are multiple wait statements in the process, the process executes only until the
next wait statement is encountered.

The following example demonstrates how this works, using a simplified Manchester encoder as an
example:

process

begin

 wait until Clk = '1' and Clk'event;

 M_out <= data_in;
 wait until Clk = '1' and Clk'event;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 85

 M_out <= not data_in;

end process;

This process will suspend its execution at two points. The first wait until statement suspends the
process until there is a rising edge on the clock (a transition to a value of '1'). When this rising edge
condition has been met, the process continues execution by assigning the value of data_in to M_out.
Next, the second wait until statement suspends the process until another rising edge has been
detected on Clk. When this condition has been met, the process continues and assigns the inverted
value of data_in to M_out. The process does not suspend at the end process statement, but instead
loops back to the beginning and immediately starts processing over again.
The use of multiple wait statements within a process makes it possible to describe very complex
multiple-clock circuits and systems. Unfortunately, such design descriptions usually fall outside of the
scope of today's synthesis tools. Rather than use multiple wait statements to describe such logic, you
will probably use wait statements only when describing test stimulus.

Using processes for combinational logic

Concurrent signal assignments can be used to create combinational logic. When you write a sequence
of concurrent signal assignments, each statement that you write is independent of all other statements
and results in a unique combinational function (unless a guarded block or some other special feature is
used to imply memory).

If you wish, you can use sequential VHDL statements (in the form of a process or subprogram) to
create combinational logic as well. Sequential VHDL statements can actually be more clear and
concise for many types of combinational functions, as they allow the priority of operations to be clearly
expressed within a combinational logic function.

The following is an example of a simple combinational logic function (a 4-into-1 multiplexer) described
using a process:

entity simple_mux is

 port (Sel: in bit_vector (0 to 1);

 A, B, C, D: in bit;

 Y: out bit);

end simple_mux;

architecture behavior of simple_mux is

begin

 process(Sel, A, B, C, D)

 begin

 if Sel = "00" then

 Y <= A;
 elsif Sel = "01" then

 Y <= B;
 elsif Sel = "10" then

 Y <= C;

VHDL Language Reference

86 TR0114 (v1.1) May 20, 2005

 elsif Sel = "11" then

 Y <= D;
 end if;

 end process;

end simple_mux;

This simple process describes combinational logic because it conforms to the following rules:

• The sensitivity list of the process includes all signals that are being read (i.e., used as inputs) within
the process.

• Assignment statements written for the process outputs (in this case only output Y) cover all possible
combinations of the process inputs (in this case Sel, A, B, C and D).

These two rules dictate whether the signal assignment logic generated from a process is strictly
combinational or will require some form of memory element (such as a flip-flop or latch).

For processes that include variable declarations, there is an additional rule that comes into play:

• All variables used in the process must have a value assigned to them before they are read (i.e.,
used as inputs).

An example of when an apparently combinational logic description actually describes registered logic is
demonstrated by the modified (6-into-1) multiplexer description shown below:

entity simple_mux is

 port (Sel: in bit_vector (0 to 2);

 A, B, C, D, E, F: in bit;

 Y: out bit);

end simple_mux;

architecture behavior of simple_mux is

begin

 process(Sel, A, B, C, D, E, F)

 begin

 if Sel = "000" then

 Y <= A;
 elsif Sel = "001" then

 Y <= B;
 elsif Sel = "010" then

 Y <= C;
 elsif Sel = "011" then

 Y <= D;
 elsif Sel = "100" then

 Y <= E;
 elsif Sel = "101" then

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 87

 Y <= F;
 end if;

 end process;

end simple_mux;

This modified version of the multiplexer has only six of the eight possible values for Sel described in
the if-then-elsif statement chain. What happens when Sel has a value of "110" or "111"? Unlike
many simpler hardware description languages (most notably languages such as ABEL or CUPL that
are intended for programmable logic use), the default behavior in VHDL is to hold the values of
unspecified signals. For output Y to hold its value when Sel has a value of "110" or "111", a memory
element (such as a latch) will be required. The result is that the circuit as described is no longer a
simple combinational logic function.

Understanding what types of design descriptions will result in combinational logic and what types will
result in latches and flip-flops is very important when writing VHDL for synthesis.

Using processes for registered logic

Perhaps the most common use of VHDL processes is to describe the behavior of circuits that have
memory and must save their state over time. The sequential nature of VHDL processes (and
subprograms) make them ideal for the description of such circuits.

If your goal is to create registered logic (using either flip-flop or latch elements), then you will describe
your design using one or more of the following methods:

• Write a process that does not include all of its inputs in the sensitivity list.
• Use incompletely specified if-then-elsif logic to imply that one or more signals must hold their

values under certain conditions.

• Use one or more variables in such a way that they must hold a value between iterations of the
process. (For example, specify a variable as an input to an assignment before that variable has
been assigned a value itself.)

To ensure the highest level of compatibility with synthesis tools, you should use a combination of
methods 1 and 2. The following example demonstrates how registered logic can be described using a
process:

-- Eight-bit shifter

--
library ieee;

use ieee.std_logic_1164.all;

entity rotate is

 port(Clk, Rst, Load: in std_logic;

 Data: in std_logic_vector(0 to 7);

 Q: out std_logic_vector(0 to 7));

end rotate;

architecture rotate1 of rotate is

VHDL Language Reference

88 TR0114 (v1.1) May 20, 2005

 signal Qreg: std_logic_vector(0 to 7);

begin

 reg: process(Rst,Clk)

 begin

 if Rst = '1' then -- Async reset

 Qreg <= "00000000";
 elsif (Clk = '1' and Clk'event) then

 if (Load = '1') then

 Qreg <= Data;
 else

 Qreg <= Qreg(1 to 7) & Qreg(0);

 end if;

 end if;

 end process;

 Q <= Qreg;
 end rotate1;

In this example, the incomplete if-then-elsif statement implies that signal Qreg will hold its value when
the two conditions (a reset or clock event) are false.

Using processes for state machines

State machines are a common form of sequential logic circuits that are used for generating or detecting
sequences of events. To describe a synthesizable state machine in VHDL, you should follow a well-
established coding convention that makes use of enumerated types and processes. The following
example demonstrates how to write a synthesizable state machine description using this coding
convention.

The circuit described is a simple freeze-frame unit that grabs and holds a single frame of NTSC color
video image. This design description includes the frame detection and capture logic. The complete
circuit requires an 8-bit D-A/A-D converter and a 256K X 8 static RAM.

The design description makes use of a number of independent processes. The first process (which has
been given the name of ADDRCTR), describes a large counter corresponding to the frame address
counter in the circuit. This counter description makes use of the IEEE Standard 1076.3 numeric data
type unsigned.
The second process, SYNCCTR, also describes a counter using the unsigned data type. This counter is
used to detect the vertical blanking interval, which indicates the start of one frame of video.
The third and fourth processes (STREG and STTRANS) describe the operation of the video frame
grabber controller logic, using the most common (and most easily synthesized) form for state
machines. First, an enumerated type called states is declared that consists of the values
StateLive, StateWait, StateSample, and StateDisplay. Two intermediate signals
(current_state and next_state) are then introduced to represent the current state and calculated

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 89

next state of the machine. In the processes that follow, signal current_state represents a set of
state registers, while next_state represents a combinational logic function.

Process STREG describes the operation of the state registers, and simply loads the value of the
calculated next state (signal next_state) into the state registers (current_state) whenever there
is a synchronous clock event. This process also includes asynchronous reset logic that will set the
machine to its initial state (StateLive) when the Rst input is asserted.

The actual transition logic for the state machine is described in process STTRANS. In this process, a
case statement is used to decode the current state of the machine (as represented by signal
current_state) and define the transitions between states. This is an example where sequential
VHDL statements are used to describe non-sequential (combinational) logic.

-- A Video Frame Grabber.

--
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity video is

 port (Reset, Clk: in std_logic;

 Mode: in std_logic;

 Data: in std_logic_vector(7 downto 0);

 TestLoad: in std_logic;

 Addr: out std_logic_vector(17 downto 0);

 RAMWE: out std_logic;

 RAMOE: out std_logic;

 ADOE: out std_logic);

end video;

architecture control1 of video is

 constant FRAMESIZE: integer := 253243;

 constant TESTADDR: integer := 253000;

 signal ENDFR: std_logic;

 signal INCAD: std_logic;

 signal VS: std_logic;

 signal Sync: unsigned (6 downto 0);

begin

 -- Address counter. This counter increments until we reach the end of

 -- the frame (address 253243), or until the input INCAD goes low.
 ADDRCTR: process(Clk)

 variable cnt: unsigned (17 downto 0);

VHDL Language Reference

90 TR0114 (v1.1) May 20, 2005

 begin

 if rising_edge(Clk) then

 if TestLoad = '1' then

 cnt := to_unsigned(TESTADDR,18);

 ENDFR <= '0';
 else

 if INCAD = '0' or cnt = FRAMESIZE then

 cnt := to_unsigned(0,18);
 else

 cnt := cnt + to_unsigned(1,18);
 end if;

 if cnt = FRAMESIZE then

 ENDFR <= '1';
 else

 ENDFR <= '0';
 end if;

 end if;

 end if;

 Addr <= std_logic_vector(cnt);
 end process;

 -- Vertical sync detector. Here we look for 128 bits of zero, which

 -- indicates the vertical sync blanking interval.
 SYNCCTR: process(Reset,Clk)

 begin

 if Reset = '1' then

 Sync <= to_unsigned(0,7);
 elsif rising_edge(Clk) then

 if Data /= "00000000" or Sync = 127 then

 Sync <= to_unsigned(0,7);
 else

 Sync <= Sync + to_unsigned(1,7);
 end if;

 end if;

 end process;

 VS <= '1' when Sync = 127 else '0';

 STATEMACHINE: block

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 91

 type states is (StateLive,StateWait,StateSample,StateDisplay);

 signal current_state, next_state: states;

 begin

 -- State register process:
 STREG: process(Reset,Clk)

 begin

 if Reset = '1' then

 current_state <= StateLive;
 elsif rising_edge(Clk) then

 current_state <= next_state;
 end if;

 end process;

 -- State transitions:
 STTRANS: process(current_state,Mode,VS,ENDFR)

 begin

 case current_state is

 when StateLive => -- Display live video on the output

 RAMWE <= '1';

 RAMOE <= '1';

 ADOE <= '0';

 INCAD <= '0';
 if Mode = '1' then

 next_state <= StateWait;
 else

 next_state <= StateLive
 end if;

 when StateWait => -- Wait for vertical sync

 RAMWE <= '1';

 RAMOE <= '1';

 ADOE <= '0';

 INCAD <= '0';
 if VS = '1' then

 next_state <= StateSample;
 else

 next_state <= StateWait

VHDL Language Reference

92 TR0114 (v1.1) May 20, 2005

 endif;

 when StateSample => -- Sample one frame of video

 RAMWE <= '0';

 RAMOE <= '1';

 ADOE <= '0';

 INCAD <= '1';
 if ENDFR = '1' then

 next_state <= StateDisplay;
 else

 next_state <= StateSample
 end if;

 when StateDisplay => -- Display the stored frame

 RAMWE <= '1';

 RAMOE <= '0';

 ADOE <= '1';

 INCAD <= '1';
 if Mode = '1' then

 next_state <= StateLive;
 else

 next_state <= StateDisplay
 end if;

 end case;

 end process;

 end block;

end control1;

Specifying State Machine Encodings
The preceding video frame grabber has been described in an implementation-independent fashion,
with the assumption that whatever synthesis tool is used to process this design will come up with an
optimal solution, in terms of the state encodings selected. For small designs such as this, or when you
are not tightly constrained for space, it is probably fine to let the synthesis tool encode your states for
you. In many cases, however, you will have to roll up your sleeves and work on improving the
synthesis results yourself, by creating your own optimal state encodings. Determining an optimal
encoding for a large state machine can be a long and tedious process. It is important to understand the
various coding styles for manually-encoded machines, however, to get the most out of synthesis.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 93

Using Constants for State Encodings
The easiest way to specify an explicit encoding for a state machine is to replace the declaration and
use of an enumerated type with a series of constant declarations. For the video frame grabber, for
example, you could replace the declarations:

type states is (StateLive,StateWait,StateSample,StateDisplay);

signal current_state, next_state: states;

with:

type states is std_logic_vector(1 downto 0);

constant StateLive: states := "00";

constant StateWait: states := "01";

constant StateSample: states := "11";

constant StateDisplay: states := "10";

signal current_state, next_state: states;

Using these declarations will result in the precise encodings that you have specified in the synthesized
circuit. There is one additional modification that must be made to this frame grabber state machine if
you specify the states using declarations based on std_logic_vector, however. Because the base type
of std_logic_vector (std_logic) has nine unique values, the four constants that have been declared
(StateLive, StateWait, StateSample and StateDisplay) do not represent all possible values
for the state type. For this reason, an others clause will have to be added to the case statement
describing the transitions of the machine, as in:

when others =>

 null;

Using the Enum_encoding Synthesis Attribute
An alternate method of specifying state machine encodings is provided in some synthesis tools. This
method makes use of a non-standard (but widely supported) attribute called enum_encoding. The
following modified declarations (again, using the video frame grabber state machine as an example)
uses the enum_encoding attribute to specify the same state encoding used in the previous example:

type states is (StateLive,StateWait,StateSample,StateDisplay);

attribute enum_encoding of states: type is "00 01 11 10";

signal current_state, next_state: states;

The enum_encoding attribute used in this example has been defined elsewhere (most probably in a
special library package provided by the synthesis vendor) as a string:

attribute enum_encoding: string;

This attribute is recognized by the synthesis tool, which encodes the generated state machine circuitry
accordingly. During simulation, the enum_encoding attribute is ignored, and the enumerated values
are displayed instead.

VHDL Language Reference

94 TR0114 (v1.1) May 20, 2005

Specifying a One-hot Encoding
One common technique for optimizing state machine logic is to use what is called a one-hot encoding,
in which there is one register dedicated to each state in the machine. One-hot machines require more
register resources than more typical, maximally-encoded machines, but can result in tremendous
savings in the combinational logic required for next-state and output decoding. This trade-off can be
particularly effective in device technologies that have an abundance of built-in registers, but that suffer
from limited (or relatively slow) routing resources.

When you first try to use a one-hot approach to state encoding, it is tempting to describe the machine
using the same methods that you might have used for your other state machines. The following
declarations represent an attempt to encode the video frame grabber state machine one-hot using
constant declarations:

type states is std_logic_vector(3 downto 0);

constant StateLive: states := "0001";

constant StateWait: states := "0010";

constant StateSample: states := "0100";

constant StateDisplay: states := "1000";

signal current_state, next_state: states;

At first glance this looks correct; each state is represented by a single bit being asserted, and when
simulated and synthesized, the machine will indeed transition to the appropriate encoded state for each
transition described in the case statement shown earlier. In terms of the logic required for state
decoding, however, a genuine one-hot machine has not been achieved. This is because the case
statement written describing the state transitions implicitly refers to all four state registers when
decoding the current state of the machine. A true, optimal one-hot machine only requires that one
register be observed to determine if the machine is in a given state.

To generate the correct logic, optimized as a one-hot encoded machine, the description has to be
modified somewhat, so that only one state register is examined for each possible transition. The
easiest way to do this is to replace the case statement with a series of if statements, as follows:.

-- State transitions for one-hot encoding:
STTRANS: process(current_state,Mode,VS,ENDFR)

begin

 if current_state(0) = '1' then -- StateLive

 RAMWE <= '1';

 RAMOE <= '1';

 ADOE <= '0';

 INCAD <= '0';
 if Mode = '1' then

 next_state <= StateWait;
 else

 next_state <= StateLive

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 95

 end if;

 end if;

 if current_state(1) = '1' then -- StateWait

 RAMWE <= '1';

 RAMOE <= '1';

 ADOE <= '0';

 INCAD <= '0';
 if VS = '1' then

 next_state <= StateSample;
 else

 next_state <= StateWait
 end if;

 end if;

 if current_state(2) = '1' then -- StateSample

 RAMWE <= '0';

 RAMOE <= '1';

 ADOE <= '0';

 INCAD <= '1';
 if ENDFR = '1' then

 next_state <= StateDisplay;
 else

 next_state <= StateSample
 end if;

 end if;

 if current_state(3) = '1' then -- StateDisplay

 RAMWE <= '1';

 RAMOE <= '0';

 ADOE <= '1';

 INCAD <= '1';
 if Mode = '1' then

 next_state <= StateLive;
 else

 next_state <= StateDisplay
 end if;

 end if;

end process;

VHDL Language Reference

96 TR0114 (v1.1) May 20, 2005

This description can be made more readable by introducing constants for the index values for each
state register.

Using processes for test stimulus

In addition to their use for describing combinational and registered circuits to be synthesized or
modeled for simulation, VHDL processes are also important for describing the test environment in the
form of sequential application of stimulus and (if desired) checking of resulting circuit outputs.

A process that is intended for testing (as part of a test bench) will normally have no sensitivity list.
 Instead, it will have a series of wait statements that provide time for the unit under test to stabilize
between the assignment of test inputs. Because a process intended for use as a test bench does not
describe hardware to be synthesized, you are free to use any legal features and style of VHDL without
regard to the limitations of synthesis.
The following is a simplistic test bench example written with a single process statement. This process
statement might be used to apply a sequence of input values to a lower-level circuit and check the
state of that circuit's outputs at various points in time.

-- A simple process to apply various stimulus over time...
process

 constant PERIOD: time := 40 ns;

begin

 Rst <= '1';

 A <= "00000000";

 B <= "00000000";
 wait for PERIOD;

 CheckState(Q, "00000000");

 Rst <= '0';

 A <= "10101010";

 B <= "01010101";
 wait for PERIOD * 4;

 CheckState(Q, "11111111");

 A <= "11111010";

 B <= "01011111";
 wait for PERIOD * 2;

 CheckState(Q, "00110101");
 wait;

end process;

In this example, the process executes just once before suspending indefinitely (as indicated by the final
wait statement). The stimulus is described by a sequence of assignments to signals A and B, and by
calls to a procedure (defined elsewhere) named CheckState. Wait statements are used to describe
a delay between each test sequence.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 97

Sequential statements in subprograms
We've seen examples of how sequential statements are written in a process statement. The process
statement is relatively easy to understand if you think of it as a small software program that executes
independent of other processes and concurrent statements during simulation.

Functions and procedures (which are collectively called subprograms) are very similar to processes in
that they contain sequential statements executed as independent 'programs' during simulation. The
parameters you pass into a subprogram are analogous to the sensitivity list of a process; whenever
there is an event on any object (signal or variable) being passed as an argument to a subprogram, that
subprogram is executed and its outputs (whether they are output parameters, in the case of a
procedure, or the return value, in the case of a function) are recalculated.

The following example includes a procedure declared within the architecture. The procedure counts the
number of ones and zeroes there are in a std_logic_vector input (of arbitrary width) and returns the
count values as output parameters. The procedure is used to build two result strings containing the
appropriate number of ones and zeroes, left justified and padded with 'X' values. (For example, an
input with the values "1010001001" would result in the values "1111XXXXXX" and "000000XXXX".)

entity proc is

 port (Clk: in std_logic;

 Rst: in std_logic;

 InVector: in std_logic_vector(0 to 9);

 OutOnes: out std_logic_vector(0 to 9);

 OutZeroes: out std_logic_vector(0 to 9));

end proc;

architecture behavior of proc is

 procedure CountBits(InVector: in std_logic_vector;

 ones,zeroes: out natural) is

 variable cnt1: natural := 0;

 variable cnt0: natural := 0;

 begin

 for I in 0 to InVector'right loop

 case InVector(I) is

 when '1' => cnt1 := cnt1 + 1;

 when '0' => cnt0 := cnt0 + 1;

 when others => null;

 end case;

 end loop;

 ones := cnt1;

 zeroes := cnt0;
 end CountBits;

VHDL Language Reference

98 TR0114 (v1.1) May 20, 2005

 signal Tmp1, Tmp0: std_logic_vector(0 to 9);

begin

 process(Rst, Clk)

 begin

 if Rst = '1' then

 OutOnes <= (others => '0');

 OutZeroes <= (others => '0');

 elsif rising_edge(Clk) then

 OutOnes <= Tmp1;

 OutZeroes <= Tmp0;
 end if;

 end process;

 process(InVector)

 variable ones, zeroes: natural;

 begin

 Countbits(InVector,ones,zeroes);
 Tmp0 <= (others => 'X');

 Tmp1 <= (others => 'X');

 for I in 0 to ones - 1 loop

 Tmp1(I) <= '1';
 end loop;

 for I in 0 to zeroes - 1 loop

 Tmp0(I) <= '0';
 end loop;

 end process;

end behavior;

This example shows that a procedure containing sequential statements can be invoked from within a
process – or even from within another procedure. The calling process simply suspends until the
procedure has completed execution.

Notes
The example above is theoretically synthesizable, but the fact that the procedure has been written
without regard to the width of the inputs will probably make it impossible to process by synthesis tools.
If this design were to be synthesized, the variables cnt1 and cnt0 would have to be given range
constraints.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 99

Signal and variable assignments
One important aspect of VHDL you should clearly understand is the relationship between sequential
statements (in a process or subprogram) and the scheduling of signal and variable assignments.
Signals within processes have fundamentally different behavior from variables. Variables are assigned
new values immediately, while signal assignments are scheduled and do not occur until the current
process (or subprogram) has been suspended. When you describe complex logic using sequential
assignments, you must carefully consider which type of object (signal or variable) is appropriate for that
part of your design.

An example of where signal assignments would be appropriate, is an 8-bit serial cyclic-redundancy-
check (CRC) generator. Signals are required because a chain of registers are being constructed. Each
register in the chain is clocked from a common source, and data moves from one register to the next
only when there is an event on Clk. The data could be described as being “scheduled.”

-- 8-bit Serial CRC Generator.

--
library ieee;

use ieee.std_logic_1164.all;

entity crc8s is

 port (Clk,Set, Din: in std_logic;

 CRC_Sum: out std_logic_vector(15 downto 0));

end crc8s;

architecture behavior of crc8s is

 signal X: std_logic_vector(15 downto 0);

begin

 process(Clk,Set)

 begin

 if Set = '1' then

 X <= "1111111111111111";
 elsif rising_edge(Clk) then

 X(0) <= Din xor X(15);

 X(1) <= X(0);

 X(2) <= X(1);

 X(3) <= X(2);

 X(4) <= X(3);
 X(5) <= X(4) xor Din xor X(15);

 X(6) <= X(5);

 X(7) <= X(6);

 X(8) <= X(7);

VHDL Language Reference

100 TR0114 (v1.1) May 20, 2005

 X(9) <= X(8);

 X(10) <= X(9);

 X(11) <= X(10);
 X(12) <= X(11) xor Din xor X(15);

 X(13) <= X(12);

 X(14) <= X(13);

 X(15) <= X(14);
 end if;

 end process;

 CRC_Sum <= X;
end behavior;

Because the data moving from register to register is scheduled, this example would not work if X was
described using a variable instead of a signal. If a variable was substituted for X, the assignments for
each stage of the CRC generation would be immediate and thus would not describe a chain of
registers.
Also, the assignment of X to CRC_Sum must be placed outside the process. If you were to write the
assignment to CRC_Sum within the process, as in:

 . . .

 X(14) <= X(13);

 X(15) <= X(14);
 end if;

 CRC_Sum <= X;
 end process;

end behavior;

the result would not be what you intended. This is because the assignment of CRC_Sum will be subject
to the execution and signal assignment rules of a process. In this case, the assignment of a final value
to X will be delayed until the process suspends, and CRC_Sum will not be updated until the next time
the process executes. (As it turns out, the next time the process executes may well be on the falling
edge of the clock, meaning that CRC_Sum would be delayed by half a clock cycle.)

If-then-else statements
VHDL includes a variety of control statements that can be used to describe combinational functions,
indicate priorities of operations, and specify other high-level behavior.
The if-then-else construct is the most common form of control statement in VHDL. The general form of
the if-then-else construct is:

if first_condition then

 statements
elsif second_condition then

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 101

 statements
else

 statements
end if;

The conditions specified in an if-then-else construct must evaluate to a Boolean type. This means that
the following example is incorrect:

procedure Mux(signal A, B, S: in std_logic; signal O: out std_logic) is

begin

 if S then -- Error: S is not Boolean!

 O <= B;
 else

 O <= A;
 end if;

end Mux;

Instead, this example must be modified so that the if statement condition evaluates to a Boolean
expression:

if S = '1' then -- Now it will work...

 O <= B;
 else

 O <= A;
 end if;

end Mux;

The statement parts of an if-then-else construct can contain any sequential VHDL statements,
including other if-then-else statement constructs. This means that you can nest multiple levels of if-
then-else statements, in the following form:

if outer_condition then

 statements
else

 if inner_condition then

 statements
 end if;

end if;

VHDL Language Reference

102 TR0114 (v1.1) May 20, 2005

Case statements
Case statements are a type of control statement that can be used as alternatives to if-then-else
constructs. Case statements have the following general form:

case control_expression is

 when test_expression1 =>

 statements
 when test_expression2 =>

 statements
 when others =>

 statements
end case;

The test expressions of a case statement must be mutually exclusive, meaning that no two test
expressions are allowed to be true at the same time. Case statements must also include all possible
conditions of the control expression. (The others expression can be used to guarantee that all
conditions are covered.)
The primary difference between descriptions written using case statements from those written using if-
then-else statements is that if-then-else statements imply a priority of conditions, while a case
statement does not imply any priority. (This is similar to the difference between conditional and
selected assignments).

Loops
Loop statements are a category of control structures that allow you to specify repeating sequences of
behavior in a circuit. There are three primary types of loops in VHDL: for loops, while loops, and
infinite loops.

For loop
The for loop is a sequential statement that allows you to specify a fixed number of iterations in a
behavioral design description. The following architecture demonstrates how a simple 8-bit parity
generator can be described using a for loop:

library ieee;

use ieee.std_logic_1164.all;

entity parity10 is

 port(D: in std_logic_vector(0 to 9);

 ODD: out std_logic);

 constant WIDTH: integer := 10;

end parity10;

architecture behavior of parity10 is

begin

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 103

 process(D)

 variable otmp: Boolean;

 begin

 otmp := false;
 for i in 0 to D'length - 1 loop

 if D(i) = '1' then

 otmp := not otmp;

 end if;

 end loop;

 if otmp then

 ODD <= '1';
 else

 ODD <= '0';
 end if;

 end process;

end behavior;

The for loop includes an automatic declaration for the index (i in this example). You do not need to
separately declare the index variable.

The index variable and values specified for the loop do not have to be numeric types and values. In
fact, the index range specification does not even have to be represented by a range. Instead, it can be
represented by a type or sub-type indicator. The following example shows how an enumerated type
can be used in a loop statement:

architecture looper2 of my_entity is

 type stateval is Init, Clear, Send, Receive, Error; -- States of a
machine
begin

 . . .
 process(a)

 begin

 for state in stateval loop

 case state is

 when Init =>

 ...
 when Clear =>

 ...
 when Send =>

 ...

VHDL Language Reference

104 TR0114 (v1.1) May 20, 2005

 when Receive =>

 ...
 when Error =>

 ...
 end case;

 end loop;

 end process;

 . . .
end looper2;

For loops can be given an optional name, as shown in the following example:

loop1: for state in stateval loop

 if current_state = state then

 valid_state <= true;
 end if;

end loop loop1;

The loop name can be used to help distinguish between the loop index variable and other similarly-
named objects, and to specify which of the multiple nested loops is to be terminated. Otherwise, the
loop name serves no purpose.

While loop
A while loop is another form of sequential loop statement that specifies the conditions under which the
loop should continue, rather than specifying a discrete number of iterations. The general form of the
while loop is shown below:

architecture while_loop of my_entity is

begin

 . . .
 process(. . .)

 begin

 . . .
 loop_name: while (condition) loop

 -- repeated statements go here
 end loop loop_name;

 . . .
 end process;

 . . .
end while_loop;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 105

Like the for loop, a while loop can only be entered and used in sequential VHDL statements (i.e., in a
process, function or procedure). The loop name is optional.
The following example uses a while loop to describe a constantly running clock that might be used in a
test bench. The loop causes the clock signal to toggle with each loop iteration, and the loop condition
will cause the loop to terminate if either of two flags (error_flag or done) are asserted.

process

begin

 while error_flag /= '1' and done /= '1' loop

 Clock <= not Clock;

 wait for CLK_PERIOD/2;

 end loop;

end process;

Notes
Although while loops are quite useful in test benches and simulation models, you may have trouble if
you attempt to synthesize them. Synthesis tools may be unable to generate a hardware representation
for a while loop, particularly if the loop expression depends on non-static elements such as signals and
variables. Because support for while loops varies widely among synthesis tools, it is recommend that
you not use them in synthesizable design descriptions.

Infinite loop
An infinite loop is a loop statement that does not include a for or while iteration keyword (or iteration
scheme). An infinite loop will usually include an exit condition, as shown in the template below:

architecture inifinite_loop of my_entity is

begin

 . . .
 process(. . .)

 . . .
 loop_name: loop

 . . .
 exit when (condition);

 end loop loop_name;

 end process;

 . . .
end infinite_loop;

An infinite loop using a wait statement is shown in the example below. This example exhibits exactly
the same behavior as a while loop:

VHDL Language Reference

106 TR0114 (v1.1) May 20, 2005

process

begin

 loop

 Clock <= not Clock;

 wait for CLK_PERIOD/2;

 if done = '1' or error_flag = '1' then

 exit;

 end if;

 end loop;

end process;

As with a while loop, an infinite loop probably has no equivalent in hardware and is therefore not
synthesizable.

Loop termination
There are many possible reasons for wanting to jump out of a loop before its normal terminating
condition has been reached. The three types of loops previously described all have the ability to be
terminated prematurely. Loop termination is performed through the use of an exit statement. When an
exit statement is encountered, its condition is tested and, if the condition is true, the simulator skips the
remaining statements in the loop and all remaining loop iterations, and continues execution at the
statement immediately following the end loop statement.

The following example demonstrates how loop termination can be used to halt a sequence of test
vectors that are being executed when an error is detected:

for i in 0 to VectorCount loop

 ApplyVector(InputVec(i), ResultVec);
 exit when CheckOutput(OutputVec(i), ResultVec) = FatalError;

end loop;

The exit condition is optional; an exit statement without an exit condition will unconditionally terminate
when the exit statement is encountered. The following example shows an unconditional exit
termination specified in combination with an if-then statement to achieve the same results as in the
previous example:

for i in 0 to VectorCount loop

 ApplyVector(InputVec(i), ResultVec);
 if CheckOutput(OutputVec(i), ResultVec) = FatalError then

 exit;

end loop;

When multiple loops are nested, the exit statement will terminate only the innermost loop. If you need
to terminate a loop that is not the innermost loop, you can make use of loop labels to specify which

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 107

loop is being terminated. The following example shows how loop labels are specified in exit
statements:

LOOP1: while (StatusFlag = STATUS_OK) loop

 GenerateSequence(InputVec,OutputVec,VectorCount,Seed);
 LOOP2: for i in 0 to VectorCount loop

 ApplyVector(InputVec(i), ResultVec);

 ErrStatus := CheckOutput(OutputVec(i), ResultVec) = TestError;
 if ErrStatus = ERR_COMPARE then

 ReportError();
 exit LOOP2;

 elsif ErrStatus = ERR_FATAL then

 ReportFatal();
 exit LOOP1;

 end if;

 end loop LOOP2;

end loop LOOP1;

VHDL Language Reference

108 TR0114 (v1.1) May 20, 2005

Modularity Features
Modular (or structured) programming is a technique that you can use to enhance your own design
productivity, as well as that of your design team. A modular design approach allows commonly-used
segments of VHDL code to be re-used. It also enhances design readability.

VHDL includes many features that can help you create modular designs. The following links look at
features that allow you to quickly and easily create reusable segments of your design, based on
methods similar to those used in software programming languages.

Functions and procedures
Functions and procedures in VHDL, which are collectively known as subprograms, are directly
analogous to functions and procedures in a high-level software programming language such as C or
Pascal. A procedure is a subprogram that has an argument list consisting of inputs and outputs, and no
return value. A function is a subprogram that has only inputs in its argument list, and has a return
value.

Subprograms are useful for isolating commonly-used segments of VHDL source code. They can either
be defined locally (within an architecture, for example), or they can be placed in a package and used
globally throughout the design description or project.

Statements within a subprogram are sequential (like a process), regardless of where the subprogram is
invoked. Subprograms can be invoked from within the concurrent area of an architecture or from within
a sequential process or higher-level subprogram. They can also be invoked from within other
subprograms.

Subprograms are very much like processes in VHDL. In fact, any statement that you can enter in a
VHDL process can also be entered in a function or procedure, with the exception of a wait statement
(since a subprogram executes once each time it is invoked and cannot be suspended while it is
executing). It is therefore useful to think of subprograms as processes that (1) have been located
outside the body of an architecture, and (2) operate only on their input and (in the case of procedures)
their output parameters.

Nesting of functions and procedures is allowed to any level of complexity, and recursion is also
supported in the language. (Of course, if you expect to generate actual hardware from your VHDL
descriptions using synthesis tools, then you will need to avoid writing recursive functions and
procedures, as such descriptions are not synthesizable).

Functions
A function is a subprogram that accepts zero or more input arguments and returns a single output
value. Because a function returns a value, it has a type associated with it. The following is an example
of a function that accepts two integer arguments and returns the greater of the two as an integer value:

function maxval (arg1, arg2: integer) return integer is

 variable result: integer;

begin

 if arg1 > arg2 then

 result := arg1;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 109

 else

 result := arg2;
 end if;

 return result;

end maxval;

The arguments to a function are all inputs to the function. They cannot be modified or otherwise
assigned values within the function. By default, the arguments are of a constant kind. This means that
the arguments are interpreted within the function as if they had been supplied as constants declared in
the function itself. An alternative type of argument, indicated by the use of the signal keyword, allows
the use of signal attributes (such as 'event) within the function. The following function (which is
provided in the IEEE 1164 standard library) demonstrates the use of a signal argument in a function:

function rising_edge (signal s: std_logic) return boolean is

begin

 return (s'event and (To_X01(s) = '1') and

 (To_X01(s'last_value) = '0'));
end rising_edge;

In this example, the keyword signal is critical to the correct operation of the function. In the absence of
the signal keyword, the 'event attribute would not be preserved.

Functions are most commonly used in situations where you require a calculation or conversion based
on the subprogram inputs. Examples of this include arithmetic or logic functions (such as the one just
presented), type conversion functions, and value checks such as you might use when writing a test
bench.

Because they return a value, functions must be used as part of a larger expression. The following
VHDL code fragment demonstrates a type conversion function being used in an expression to convert
an array data type to an integer:

signal Offset: integer range (0 to 1023);

signal BUS1: std_logic_vector(11 downto 0);

 . . .

Offset <= to_integer(BUS1) + 136;

Operators as Functions
One interesting feature of VHDL is its support for operator overloading. Operator overloading allows
you to specify custom functions representing symbolic operations for your own data types. To define a
new operation (or modify an existing one), you simply write a function and enclose its name (which can
be a non-numeric name such as an operator symbol) in double-quote characters.

The following operator function is taken directly from the IEEE 1164 standard logic package, and
demonstrates how operator overloading works:

function "and" (l : std_logic; r : std_logic) return UX01 is

VHDL Language Reference

110 TR0114 (v1.1) May 20, 2005

begin

 return(and_table(l, r));

end "and";

In this example, the function and is declared as a function returning the type UX01 (a four-valued logic
type used internally in the standard logic package). The function is identified during compilation by its
name (and) and by the types and number of its arguments. For example, in the expression:

architecture simple of and_operation is

 signal Y, A, B: std_logic;

begin

 Y <= A and B;

end simple;

the and operation is actually a function defined using the previously listed statements. In fact, all of the
standard operations that you use in VHDL (including such operators as and, or, not, +, -, *, & and <)
are actually functions declared in libraries such as std and ieee.

Notes
In source code listings presented in this document the typographic convention of listing all VHDL
keywords in bold face has been used. As you have just seen, however, many of the keywords that are
listed in bold face are actually functions defined in a standard library.

Procedures
Procedures differ from functions in that they do not have a return value, and their arguments may
include both inputs and outputs to the subprogram. Because each argument to a procedure has a
mode (in, out, or inout), they can be used very much like you would use an entity/architecture pair to
help simplify and modularize a large and complex design description.

Procedures are used as independent statements, either within the concurrent area of an architecture or
within the sequential statement area of a process or subprogram.

The following sample procedure defines the behavior of a clocked JK flip-flop with an asynchronous
reset:

procedure jkff (signal Rst, Clk: in std_logic;

 signal J, K: in std_logic;

 signal Q,Qbar: inout std_logic) is

begin

 if Rst = '1' then

 Q <= '0';
 elsif Clk = '1' and Clk'event then

 if J = '1' and K = '1' then

 Q <= Qbar;
 elsif J = '1' and K = '0' then

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 111

 Q <= '1';
 elsif J = '0' and K = '1' then

 Q <= '0';
 end if;

 end if;

 Qbar <= not Q;

end jkff;

A procedure may include a wait statement, unless it has been called from within a process that has a
sensitivity list.

Notes
Variables declared and used within a procedure are not preserved between different executions of the
procedure. This is unlike a process, in which variables maintain their values between executions.
Variables within a procedure therefore do not maintain their values over time, unless the procedure is
suspended with a wait statement.

Declaring a global subprogram
Functions and procedures can be declared either globally, so they are usable throughout a design
description, or they can be declared locally within the declarative region of an architecture, block,
process, or even within another subprogram. If you are writing a subprogram that will be used
throughout your design, you will write the subprogram declaration in an external package, as shown in
the following example:

package my_package is

 function my_global_function(...)

 return bit;

end my_package;

package body my_package is

 function my_global_function(...)

 return bit is

 begin

 . . .
 end my_global_function;

end my_package;

. . .
use work.my_package.my_global_function;

entity my_design is
begin
 . . .
end my_design;

VHDL Language Reference

112 TR0114 (v1.1) May 20, 2005

In this example, the function my_global_function() has been declared within the package
my_package. The actual body of the function – the sequence of statements that define its operation –
is placed into a package body. (The reasons why a subprogram requires a package body in addition to
a package are somewhat obscure, but they have to do with the fact that the statements in a
subprogram must be executed when the design description is simulated, while other declarations
appearing in a package can be completely resolved at the time the VHDL description is first analyzed
by the VHDL compiler.) To use the global function in subsequent architectures (such as the
architecture associated with entity my_design in this example), a use statement (and library
statement, if the package has been compiled into a named library) must precede the declaration for
that architecture or its parent entity.

Declaring a local subprogram
Another way of using subprograms is to declare them locally, such as within an architecture or block
declaration. In the following example, my_local_function() has been declared entirely within the
architecture my_architecture:

architecture my_architecture of my_design is

begin

 my_process: process(...)

 function my_local_function(...)

 return bit is

 begin

 . . .
 end my_local_function;

 begin

 . . .
 end process my_process;

end my_architecture;

This example demonstrates the concept of local scoping. VHDL objects (such as signals, variables and
constants) can be declared at many points in a design, and that the visibility, or scoping, of those
objects depends on where they have been declared. Subprograms (functions and procedures) also
have scoping. In this example, the function my_local_function can only be referenced within the
architecture in which it has been declared and defined.

Consistent scoping of objects and subprograms is an important part of modular VHDL coding and of
structured programming in general. If you will only be using an object or subprogram in one section of
your overall design, then you should keep the declaration of that object or subprogram local to that
section of the design. This will make it possible to re-use that section of the design elsewhere with a
minimum of fuss (since you won't have to remember to declare the object or subprogram globally in the
new design).

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 113

Subprogram overloading
Because a function or procedure is uniquely identified by its name in combination with its argument
types, there can be more than one function or procedure defined with the same name, depending on
the types of the operands required. This feature (called subprogram overloading) is important because
the function required to perform a given operation on one type of data may be quite different than the
function required for another type.

It is unlikely that you will need to use subprogram overloading in your own design efforts. Instead, you
will use the standard data types provided for you in the language standards, and you will use the
predefined operators for those data types exclusively. You might find it useful, however, to look over
the operators defined in the standard libraries so you have a better idea of the capabilities of each
standard data type provided.

Parameter types
Subprograms operate on values or objects that are passed in as parameters to the subprogram.
Procedures differ from functions in that they can also pass information out on the parameter list. (The
parameters of a procedure have directions, or modes.)
There are three classes of parameters available for subprograms: constant, variable and signal. The
default class, if no other class is specified, is constant. The parameters that are used within the
function or procedure are called the formal parameters, while the parameters passed into the function
or procedure are called the actual parameters.
The primary difference between constant, variable and signal parameters is the type of actual
parameters that can be passed into the subprogram when it is called. If the formal parameter of a
subprogram is of class constant, the actual parameter can be any expression that evaluates to a data
type matching that of the formal parameter. For parameters of class variable or signal, the actual
parameters must be variable or signal objects, respectively.

Parameters of subprograms transfer only the value of the actual parameters (those parameters
specified when the subprogram is called) for the formal parameters (the parameters specified in the
subprogram declaration). Attribute information is not passed directly into the subprogram. (The
attributes that you will most often be concerned with, such as 'event, will be available if you are using
parameters of class signal.)

Mapping of parameters
Many of the examples used in the topics within this sub-folder have used what is referred to as
positional association to describe how actual parameters are paired with formal parameters of the
subprogram.

Positional association is a quick and convenient way to describe the mapping of parameters, but it can
be error-prone.

For this reason, you might want to write your subprogram references using an alternate form of port
map called named association. Named association guarantees that the correct parameters are
connected, and it also gives you the ability to re-order the parameters as needed.

The following example shows how the same subprogram might be referenced using both positional
and named association:

VHDL Language Reference

114 TR0114 (v1.1) May 20, 2005

dff(Rst,Clk,Data,Result);

dff(Rst=>Rst,C=>Clk,D=>Data,a=>Result);

The special operator => indicates exactly which lower-level ports are to be connected to which higher-
level signals.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 115

Partitioning Features
VHDL provides many high-level features to help you manage a complex design description. In fact,
design management is one of VHDL's key strengths when compared to alternative design entry
languages and methods.

The modularity features (procedures and functions) are one aspect of design management, allowing
commonly-used declarations and sequential statements to be collected in one place. Design
partitioning is another important aspect of design management. Design partitioning goes beyond
simpler design modularity methods to provide comprehensive design management across multiple
projects and allow alternative structural implementations to be tried out with minimal effort.

Design partitioning is particularly useful for those designs being developed in a team environment, as it
promotes cooperative design efforts and well-defined system interfaces.

Blocks
Blocks are the simplest form of design partitioning. They provide an easy way to segment a large
VHDL architecture into multiple self-contained parts. Blocks allow the logical grouping of statements
within an architecture, and provide a place to declare locally-used signals, constants, and other objects
as needed.

VHDL blocks are analogous to sheets in a multi-sheet schematic. They do not represent re-usable
components (unless you re-use them by copying them with your text editor or by using configurations),
but do enhance readability by allowing declarations of objects to be kept close to where those objects
are actually used.
The general form of the block statement is shown below:

architecture my_arch of my_entity is

begin

 BLOCK1: block

 signal a,b: std_logic;

 begin

 -- some local statements here
 end block BLOCK1;

 BLOCK2: block

 signal a,b std_logic;

 begin

 -- some other local statements here

 -- Note that 'a' and 'b' are unique to this block!
 end block BLOCK2;

end my_arch;

This simple example includes two blocks, named BLOCK1 and BLOCK2, that each include declarations
for local signals. In the first block, BLOCK1, the signals a and b are declared prior to the begin

VHDL Language Reference

116 TR0114 (v1.1) May 20, 2005

statement of the block. These signals are therefore local to block BLOCK1 and are not visible outside of
it. The second block, BLOCK2, also has declarations for local signals named a and b, but these are not
the same signals as those declared in block BLOCK1.

This concept of local declarations is important to understand and is probably familiar to you if you have
used high-level programming languages. One of the most important techniques of structured
programming (whether you are describing software or hardware) is to minimize the overall complexity
of your design description by localizing the declarations as much as is practical. Keeping signals local
will make the design description easier to read, allow it to be modified more easily in the future, and
also enhance design re-use, since it will be easier to copy one portion of the design to another project
or source file.

Nested Blocks
Blocks can be nested, as shown in the following example:

architecture my_arch of my_entity is

begin

 BLOCK1: block

 signal a,b: std_logic;

 begin

 BLOCK2: block

 signal c,d std_logic;

 begin

 -- This block is now local to block BLOCK1 and has

 -- access to 'a' and 'b'
 end block BLOCK2;

 end block BLOCK1;

end my_arch;

In this example, block BLOCK2 has been placed within block BLOCK1. This means that all declarations
made within BLOCK1 (signals a and b, in this example) are visible both within block BLOCK1 and block
BLOCK2. The reverse is not true, however. The declarations for c and d within block BLOCK2 are local
only to BLOCK2 and are not visible outside that block. What happens when the same signals are
declared in two blocks that are nested? Consider the following:

architecture my_arch of my_entity is

begin

 BLOCK1: block

 signal a,b: std_logic;

 begin

 BLOCK2: block

 signal a,b std_logic;

 begin

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 117

 -- This a and b overrides previous
 end block BLOCK2;

 end block BLOCK1;

end my_arch;

In this example, the signals a and b are declared both in the outer block (BLOCK1) and in the inner
block (BLOCK2). The result is that the signals a and b in the outer block are hidden (but not replaced or
overwritten) by the declarations of a and b in the inner block.

Guarded Blocks
Guarded blocks are special forms of block declarations that include an additional expression known as
a guard expression. The guard expression enables or disables drivers within the block, allowing circuits
such as latches and output enables to be easily described using a dataflow style of VHDL.

The following example shows how a guarded block can be used to describe the operation of a latch:

use ieee.std_logic_1164.all;

entity latch is

 port(D, LE: in std_logic;

 Q, QBar: out std_logic);

end latch;

architecture mylatch of latch is

begin

 L1: block (LE = '1')

 begin

 Q <= guarded D after 5 ns;

 QBar <= guarded not(D) after 7 ns;

 end block L1;

end mylatch;

In this example, the guard expression LE = '1' applies to all signal assignments that include the
guarded keyword. (Guard expressions are placed in parentheses after the block keyword.) The signal
assignments for Q and QBar therefore depend on the value of LE being '1'. When LE is not '1', the
guarded signals hold their values.

Notes
If you need to access a signal that has been effectively hidden by a declaration of the same name, you
can qualify the signal name with a block name prefix, as in BLOCK1.a or BLOCK1.b.

Guarded blocks are not supported by all synthesis tools, so it is not recommended that you use them
for designs intended for synthesis. Instead, you should use a process or subprogram to describe the
behavior of registered or latched circuits.

VHDL Language Reference

118 TR0114 (v1.1) May 20, 2005

Packages
Packages are intended to hold commonly-used declarations such as constants, type declarations and
global subprograms. Packages can be included within the same source file as other design units (such
as entities and architectures) or may be placed in a separate source file and compiled into a named
library. This latter method is useful when you will be using the contents of a package throughout a large
design or in multiple projects.

Packages may contain the following types of objects and declarations:

• Type and subtype declarations

• Constant declarations

• File and alias declarations

• Component declarations

• Attribute declarations

• Functions and procedures

• Shared variables
When items from the package are required in other design units, you must include a use statement to
make the package and its contents visible for each design unit.
The following is an example of a package declaration and its corresponding use statements:

library ieee;

use ieee.std_logic_1164.all;

package my_types is

 subtype byte is std_logic(0 to 7);

 constant CLEAR: byte := (others=>'0');

end my_types;

use work.mytypes.all;

use ieee.std_logic_1164.all;

entity rotate is

 port(Clk, Rst, Load: in std_logic;

 Data: in byte;

 Q: out byte);

end rotate;

architecture rotate4 of rotate is

 signal Qreg: byte;

begin

 Qreg <= Data when (Load = '1') else

 Qreg(1 to byte'LENGTH-1) & Qreg(0);

 dff(Rst, Clk, Qreg, Q);
end rotate4;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 119

In this example, the package my_types includes declarations for a subtype (byte) and constant
(CLEAR) that will be used throughout the subsequent design description. The statement use
work.mytypes.all specifies that all contents of the package mytypes should be loaded from the
default library (work). (The work library is a special library described in the VHDL specification as one
that does not require a library statement and into which all design units are analyzed by default.) An
alternative to using the all keyword in the use statement would be to specify precisely which items in
the default library are to be made visible, as in use work.mytypes.byte and use
work.mytypes.CLEAR.

How Are Packages Used?
When you create your own VHDL design descriptions, you can use packages in a number of ways.
First, you can dramatically simplify your designs by placing commonly-used declarations (such as
byte and CLEAR in the previous example) into packages that are used throughout your project. You
will probably find that using libraries to collect such packages in one place will simplify the design even
further and make it easier to share commonly-used declarations between different design descriptions.

Another way you can use packages is to reference pre-written packages that have been provided for
you. One example of such a package is found in the IEEE 1164 Standard Logic standard. The IEEE
1164 standard provides a standard package named std_logic_1164 that includes declarations for the
types std_logic, std_ulogic, std_logic_vector and std_ulogic_vector, as well as many useful functions
related to those data types.

Packages may also be provided to you by vendors of synthesis and simulation tools. Synthesis tools,
for example, often include packages containing synthesizable type conversion functions, synthesizable
procedures for flip-flops and latches, and other useful design elements.

Finally, there is a standard package that includes declarations for all the standard data types (bit,
bit_vector, integer and so on). This standard package is defined by the IEEE 1076 standard and
automatically made visible to all design units. (You do not have to specify a use clause for the standard
package.)

Package Bodies
Packages that include global subprograms (functions or procedures) or deferred constants must defer
part of their declaration (the part that must be analyzed during simulation) to a separate design unit
called a package body. Every package can have, at most, one corresponding package body. Package
bodies are optional and are only required when a package includes subprograms or deferred
constants.

The following example shows how a package body must be used when a subprogram (in this case, a
procedure describing the behavior of a D flip-flop) is declared in a package:

package my_reg8 is

 subtype byte8 is std_logic_vector(0 to 7);

 constant CLEAR8: byte8 := (others=>'0');

 procedure dff8 (signal Rst, Clk: in std_logic;

 signal D: in byte;

 signal Q: out byte);

VHDL Language Reference

120 TR0114 (v1.1) May 20, 2005

end my_reg8;

package body my_reg8 is

 procedure dff8 (signal Rst, Clk: in std_logic;

 signal D: in byte8;

 signal Q: out byte8) is

 begin

 if Rst = '1' then

 Q <= CLEAR8;
 elsif Clk = '1' and Clk'event then

 Q <= D;
 end if;

 end dff;

end my_reg8;

In this example, the procedure dff8 is declared initially in the package my_reg8. This first declaration
is somewhat akin to a "function prototype" as used in the C or C++ languages, and it defines the
interface to the procedure. The package body that corresponds to package my_reg8 (and shares its
name) contains the complete description of the procedure.

Design libraries
A design library is defined in the VHDL 1076 standard as "an implementation-dependent storage facility
for previously analyzed design units". This rather loose definition has resulted in many different
implementations in synthesis and simulation tools. In general, however, you will find that design
libraries are used to collect commonly-used design units (typically packages and package bodies) into
uniquely-named areas that can be referenced from multiple source files in your design.

In a typical simulation environment, you will specify to the simulator the library into which you want
each design unit compiled (or analyzed, to use the terminology of the VHDL standard). If you do not
specify a library, the design units are compiled into a default library named work.

For simple design descriptions (such as those that are completely represented within a single source
file), you will use the work library exclusively and will not have to put much thought into how libraries
are implemented in the set of tools you are using. When you use the work library exclusively, all you
need to do is specify a use statement such as:

use work.my_package.all;

prior to each entity declaration in your design for each package that you have declared in your source
file. (You do not have to place use statements prior to an architecture declaration if the corresponding
entity declaration is preceded by a use statement.)

If, however, you choose to use named libraries in your designs (and you are encouraged to do so, as it
can dramatically improve your design productivity), then you should follow a few simple rules to avoid
compatibility problems when moving between different simulation and synthesis environments. First,
you should not use the work library to contain packages that are shared between design units located
in different source files. Although some simulation environments allow previously-compiled contents of

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 121

the work library to be accessed at any time (such as during the separate compilation of a source file),
this is not actually defined by the VHDL standard and may not work in other simulation and synthesis
environments.
Some synthesis and simulation tools actually define the work library to be only those design units that
are included in the source file currently being compiled. This is a simple rule of usage and is the
recommended use of work.

To keep your use of libraries as simple as possible, it is recommended that you make consistent use of
VHDL source file names and corresponding library file names, and avoid the use of work for all but the
simplest packages.

Package Visibility
The library statement described in the previous section is used to load a library so that its contents are
available when compiling a source file. However, the library statement does not actually make the
contents of the specified library (the packages or other design units found in the library) visible to
design units in the current source file. Visibility is created when you specify one or more use
statements prior to the design units requiring access to items in the library.
The use statement is quite flexible. You can specify exactly which items within a package are to be
made visible, specify that all items in a package are to be made visible, or specify that all items in all
packages for a specific library are to be made visible. The following examples demonstrate some of the
possible uses of use statements:

use mylib.my_package.all; -- All items in my_package are visible

use mylib.my_package.dff; -- Just using the dff procedure

use mylib.all; -- Make everything in the library visible

In general, you will find that it is most convenient to place a library statement (one for each external
library being used) at the beginning of your source file, and place use statements just prior to those
design units requiring visibility of items in the library. To prevent compatibility problems as described
above, you should avoid using work for shared packages or other design units that cross source file
boundaries.
For clarity, it is recommended that you specify both the library and package name in your use
statements, even if you are using all items in the library.

Components
Components are used to connect multiple VHDL design units (entity/architecture pairs) together to form
a larger, hierarchical design. Using hierarchy can dramatically simplify your design description and can
make it much easier to re-use portions of the design in other projects. Components are also useful
when you want to make use of third-party design units, such as simulation models for standard parts,
or synthesizable core models obtained from a company specializing in such models.

The following describes the relationship between the three design units in a shift and compare design
example:

architecture structure of shiftcomp is

 component compare

VHDL Language Reference

122 TR0114 (v1.1) May 20, 2005

 port(A, B: in bit_vector(0 to 7); EQ: out bit);

 end component;

 component shift

 port(Clk, Rst, Load: in bit;

 Data: in bit_vector(0 to 7);

 Q: out bit_vector(0 to 7));

 end component;

 signal Q: bit_vector(0 to 7);

begin

 COMP1: compare port map (Q, Test, Limit);

 SHIFT1: shift port map (Clk, Rst, Load, Init, Q);

end structure;

In this example, the two lower-level components (shift and compare) were instantiated in the higher-
level module (shiftcomp) to form a hierarchy of design units. Each component instantiation is
represented by a component name that is unique within the architecture or block.

Component instantiations are concurrent statements and therefore have no order-dependency. A
design unit (such as this one) that includes only component instantiation statements can be thought of
as a netlist, such as might be written (or generated) to represent the connections on a schematic.

Mapping of Ports
The previous example of component instantiation used positional association to describe how signals
at the higher level (in this case shiftcomp) are to be matched with (i.e., connected to) ports of the
entities in the lower-level modules (shift and compare).

Positional association is a quick and convenient way to describe the mapping of signals to ports in a
component instantiation, but it can be error-prone. Consider, for example, what would have happened
if the component instantiation for the shift module had been written as follows:

SHIFT1: shift port map (Rst, Clk, Load, Init, Q);

Because the Rst and Clk signals are of the same type (std_logic), the simulator or synthesis tool
would accept this port mapping without complaint, and it would connect the reset signal to the clock
and connect the clock to the reset. The circuit would not operate as expected, and the problem might
be difficult to debug.

For this reason, it is generally recommend that you write component instantiations using an alternate
form of port map called named association. Named association guarantees that the correct signals and
ports are connected through the hierarchy, and it also gives you the ability to re-order the ports as
needed.

The following example shows how the same component (a NAND gate) might be instanced using both
positional and named association:

U1: nand2 port map (a, b, y); -- Positional association

U2: nand2 port map (a=>in1,b=>in2,y=>out1); -- Named association

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 123

The special operator => indicates exactly which lower-level ports (a, b and y, in this case) are to be
connected to which higher-level signals (in1, in2 and out1).

Named association also makes it possible to leave one or more lower-level ports unconnected using
the keyword open, as shown below:

U2: count8 port map (C => Clk1, Rst => Clr, L => Load, D => Data,

 Q => , Cin => open);

Generics
It is possible to pass instance-specific information other than actual port connections to an entity using
a feature called generics. Generics are very useful for making design units more general-purpose or for
annotating information (such as timing specifications) to an entity at the time the design is analyzed for
simulation or synthesis.

The following example shows how generics can be used to create a parameterized model of a D-type
flip-flop:

library ieee;

use ieee.std_logic_1164.all;

entity dffr is

 generic (wid: positive);

 port (Rst,Clk: in std_logic;

 signal D: in std_logic_vector(wid-1 downto 0);

 signal Q: out std_logic_vector(wid-1 downto 0));

end dffr;

architecture behavior of dffr is

begin

 process(Rst,Clk)

 variable Qreg: std_logic_vector(wid-1 downto 0);

 begin

 if Rst = '1' then

 Qreg := (others => '0');

 elsif Clk = '1' and Clk'event then

 for i in Qreg'range loop

 Qreg(i) := D(i);
 end loop;

 end if;

 Q <= Qreg;
 end process;

end behavior;

VHDL Language Reference

124 TR0114 (v1.1) May 20, 2005

In this example, the dffr entity has a generic list in addition to a port list. This generic list contains one
entry, a positive integer, that corresponds to the width of the D input and Q output. The architecture
declaration uses a for loop in conjunction with the generic (wid) to describe the operation of the D-
type flip-flops.

When instantiated in a higher-level design unit, a generic map must be provided in addition to the port
map, as shown below:

architecture sample of reg is

 component dffr

 generic (wid: positive);

 port (Rst,Clk: in std_logic;

 signal D: in std_logic_vector(wid-1 downto 0);

 signal Q: out std_logic_vector(wid-1 downto 0));

 end component;

 constant WID8: positive := 8;

 constant WID16: positive := 16;

 constant WID32: positive := 32;

 signal D8,Q8: std_logic_vector(7 downto 0);

 signal D16,Q16: std_logic_vector(15 downto 0);

 signal D32,Q32: std_logic_vector(31 downto 0);

begin

 FF8: dffr generic map(WID8) port map(Rst,Clk,D8,Q8);

 FF16: dffr generic map(WID16) port map(Rst,Clk,D16,Q16);

 FF32: dffr generic map(WID32) port map(Rst,Clk,D32,Q32);

end sample;

The example shows how three instances of the dffr design unit can be created using different values
for the generic.

Notes
When using named associations, it is a good idea to place each one on a separate line. This simplifies
debugging because the debugger will identify the exact line where an association error occurred.

Configurations
Configurations are features of VHDL that allow large, complex design descriptions to be managed
during simulation. One example of how you might use configurations is to construct two versions of a
system-level design, one of which makes use of high-level behavioral descriptions of the system
components, while a second version substitutes in a post-synthesis timing model of one or more
components.

A configuration declaration is a primary design unit that defines the binding of some or all of the
component instances in your design description to corresponding lower-level entities and architectures.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 125

The configuration declaration can form a simple parts list for your design, or it can be written to contain
detailed information about how each component is "wired into" the rest of the design (through specific
port mappings) and the values for generics being passed into each entity.

If you think of the configuration declaration as a parts list for your design, you can perhaps visualize it
better as follows: consider a design description in which you have described an entity named Board
with an architecture named structure. In the architecture structure you have described one instance
(U1) of a component called Chip. Moving down in the hierarchy of your design, let's suppose that the
entity Chip has been written with four alternative architectures named A1, A2, A3 and A4. There are
many reasons why you might have done this. For example, the default architecture might be the final
synthesizable version of the chip, while the remaining three are versions intended strictly for high-level
simulation.

There are many applications of configurations in simulation. For large projects involving many
engineers and many design revisions, configurations can be used to manage versions and specify how
a design is to be configured for system simulation, detailed timing simulation, and synthesis. Because
simulation tools allow configurations to be modified and recompiled without the need to recompile other
design units, it is easy to construct alternate configurations of a design very quickly without having to
recompile the entire design.

Notes
Configurations are not generally supported in synthesis tools.

VHDL Language Reference

126 TR0114 (v1.1) May 20, 2005

Test Benches
One of the primary reasons to use VHDL is its power as a test stimulus language. As logic designs
become more complex, comprehensive, up-front verification becomes critical to the success of a
design project. In fact, as you become proficient with simulation, you will quickly find that your VHDL
simulator becomes your primary design development tool. When simulation is used right at the start of
the project, you will have a much easier time with synthesis, and you will spend far less time re-running
time-intensive processes, such as FPGA place-and-route tools and other synthesis-related software.

To simulate your project, you will need to develop an additional VHDL program called a test bench.
(Some VHDL simulators include a command line stimulus language, but these features are no
replacement for a true test bench.) Test benches emulate a hardware breadboard into which you will
"install" your synthesizable design description for the purpose of verification. Test benches can be quite
simple, applying a sequence of inputs to the circuit over time. They can also be quite complex, perhaps
even reading test data from a disk file and writing test results to the screen and to a report file. A
comprehensive test bench can, in fact, be more complex and lengthy (and take longer to develop) than
the synthesizable circuit being tested. As you will begin to appreciate, test bench development will be
where you make use of the full power of VHDL and your own skills as a VHDL “coder”.

Depending on your needs (and whether timing information related to your target device technology is
available), you may develop one or more test benches to verify the design functionally (with no delays),
to check your assumptions about timing relationships (using estimates or unit delays), or to simulate
with annotated post-route timing information so you can verify that your circuit will operate in-system at
speed.

During simulation, the test bench will be the top level of a design hierarchy. To the simulator, there is
no distinction between those parts of the design that are being tested and the test bench itself.

When writing test benches, you will most likely use a broader range of language features. You may use
records and multi-dimensional arrays to describe test stimuli, write loops, create subprograms to
simplify repetitive actions, and/or use VHDL's text I/O features to read and write files of data.

A simple test bench
The simplest test benches are those that apply some sequence of inputs to the circuit being tested (the
Unit Under Test, or UUT) so that its operation can be observed in simulation. Waveforms are typically
used to represent the values of signals in the design at various points in time. Such a test bench must
consist of a component declaration corresponding to the unit under test, and a description of the input
stimulus being applied to the UUT.

The following example demonstrates the simplest form of a test bench, and tests the operation of a
NAND gate:

library ieee; -- Load the ieee 1164 library

use ieee.std_logic_1164.all; -- Make the package 'visible'

use work.nandgate; -- We'll use the NAND gate model from 'work'

-- The top level entity of the test bench has no ports...

--

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 127

entity testnand is

end testnand;

architecture stimulus of testnand is

 -- First, declare the lower-level entity...
 component nand

 port (A,B: in std_logic;

 Y: out std_logic);

 end component;

 -- Next, declare some local signals to assign values to and observe...
 signal A,B: std_logic;

 signal Y: std_logic;

begin

 -- Create an instance of the comparator circuit...
 NAND1: nandgate port map(A => A,B => B,Y => Y);

 -- Now define a process to apply some stimulus over time...
 process

 constant PERIOD: time := 40 ns;

 begin

 A <= '1';

 B <= '1';
 wait for PERIOD;

 assert (Y = '0')

 report "Test failed!" severity ERROR;

 A <= '1';

 B <= '0';
 wait for PERIOD;

 assert (Y = '1')

 report "Test failed!" severity ERROR;

 A <= '0';

 B <= '1';
 wait for PERIOD;

 assert (Y = '1')

 report "Test failed!" severity ERROR;

 A <= '0';

 B <= '0';
 wait for PERIOD;

VHDL Language Reference

128 TR0114 (v1.1) May 20, 2005

 assert (Y = '1')

 report "Test failed!" severity ERROR;

 wait;

 end process;

end stimulus;

Reading from the top of this test bench, the key areas of VHDL are:
• Library and use statements making the standard logic package available for use (the lower-level

NAND gate model has been described using standard logic).
• An optional use statement referencing the lower-level design unit nand from the work library.

• An entity declaration for the test bench.

• An architecture declaration, containing:

• A component declaration corresponding to the unit under test.
• Signal declarations for A, B, and Y. These local signals will be used to (1) apply inputs to the unit

under test, and (2) observe the behavior or the output during simulation.
• A component instantiation statement and corresponding port map statement that associates the

top-level signals A, B and Y with their equivalent ports in the lower-level entity. The component
name used is not significant; any valid component name could have been chosen.

• A process statement describing the inputs to the circuit over time. This process has been written
without the use of a sensitivity list. It uses wait statements to provide a specific amount of delay
(defined using constant PERIOD) between each new combination of inputs. Assert statements are
used to verify that the circuit is operating correctly for each combination of inputs. Finally, a wait
statement without any condition expression is used to suspend simulation indefinitely after the
desired inputs have been applied. (In the absence of the final wait statement, the process would
repeat forever, or for as long as the simulator had been instructed to run.)

Notes
Test benches do not generally include an interface (port) list, as they are the highest-level design unit
when simulated.

Using assert statements
VHDL's assert statement provides a quick and easy way to check expected values and display
messages from your test bench. An assert statement has the following general format:

assert condition_expression

 report text_string

 severity severity_level ;

When analyzed (either during execution as a sequential statement, or during simulator initialization in
the case of a concurrent assert statement), the condition expression is evaluated. As in an if
statement, the condition expression of an assert statement must evaluate to a boolean (true or false)
value. If the condition expression is false (indicating the assertion failed), the text that you have
specified in the optional report statement clause is displayed in your simulator's transcript (or other)

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 129

window. The severity statement clause then indicates to the simulator what action (if any) should be
taken in response to the assertion failure (or assertion violation, to use the language of the VHDL
specification).

The severity level can be specified using one of the following predefined severity levels: NOTE,
WARNING, ERROR, or FAILURE. The actions that result from the use of these severity levels will
depend on the simulator you are using, but you can generally expect the simulator to display a file
name and line number associated with the assert statement, keep track of the number of assertion
failures, and print a summary at the end of the simulation run. Assert statements that specify FAILURE
in their severity statement clauses will normally result in the simulator halting.

Displaying complex strings in assert statements
A common use of assert and report statements is to display information about signals or variables
dynamically during a simulation run. Unfortunately, VHDL's built-in support for this is somewhat limited.
The problem is twofold: first, the report clause only accepts a single string as its argument, so it is
necessary to either write multiple assert statements to output multiple lines of information (as when
formatting and displaying a table), or you must make use of the string concatenation operator & and
the special character constant CR (carriage return) and/or LF (line feed) to describe a single, multi-line
string as shown below:

assert false

 report "This is the first line of the message." & CR & LF &

 "This is the second line of the message.";

The second, more serious limitation of the report statement clause is that it only accepts a string, and
there is no built-in provision for formatting various types of data (such as arrays, integers and the like)
for display. This means that to display such data in an assert statement, you must provide type
conversion functions that will convert from the data types you are using to a formatted string. The
following example demonstrates how you might write a conversion function to display a
std_logic_vector array value as a string of characters:

architecture stimulus of testfib is

 . . .
 function vec2str(vec: std_logic_vector) return string is

 variable stmp: string(vec'left+1 downto 1);

 begin

 for i in vec'reverse_range loop

 if (vec(i) = 'U') then

 stmp(i+1) := 'U';
 elsif (vec(i) = 'X') then

 stmp(i+1) := 'X';
 elsif (vec(i) = '0') then

 stmp(i+1) := '0';
 elsif (vec(i) = '1') then

VHDL Language Reference

130 TR0114 (v1.1) May 20, 2005

 stmp(i+1) := '1';
 elsif (vec(i) = 'Z') then

 stmp(i+1) := 'Z';
 elsif (vec(i) = 'W') then

 stmp(i+1) := 'W';
 elsif (vec(i) = 'L') then

 stmp(i+1) := 'L';
 elsif (vec(i) = 'H') then

 stmp(i+1) := 'H';
 else

 stmp(i+1) := '-';
 end if;

 end loop;

 return stmp;

 end;

 . . .
 signal S: std_logic_vector(15 downto 0);

 signal S_expected: std_logic_vector(15 downto 0);

 begin

 . . .
 process

 begin

 . . .
 assert (S /= S_expected) -- report an error if different

 report "Vector failure!" & CR & LF &

 "Expected S to be " & vec2str(S_expected) & CR & LF &

 "but its value was " & vec2str(S)
 severity ERROR;

In this example, a type conversion function has been written (vec2str) that converts an object of type
std_logic_vector to a string of the appropriate format and size for display. As you develop more
advanced test benches, you will probably find it useful to collect such type conversion functions into a
library for use in future test benches.

Using loops and multiple processes
Test benches can be dramatically simplified through the use of loops, constants and other more
advanced features of VHDL. Using multiple concurrent processes in combination with loops can result
in very concise descriptions of complex input and expected output conditions.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 131

The following example demonstrates how a loop (in this case a while loop) might be used to create a
background clock in one process, while other loops (in this case for loops) are used to apply inputs
and monitor outputs over potentially long periods of time:

 Clock1: process

 variable clktmp: std_logic := '1';

 begin

 while done /= true loop

 wait for PERIOD/2;

 clktmp := not clktmp;

 Clk <= clktmp;
 end loop;

 wait;

 end process;

 Stimulus1: Process

 Begin

 Reset <= '1';
 wait for PERIOD;

 Reset <= '0';

 Mode <= '0';
 wait for PERIOD;

 Data <= (others => '1');

 wait for PERIOD;

 Mode <= '1';

 -- Check to make sure we detect the vertical sync...
 Data <= (others => '0');

 for i in 0 to 127 loop

 wait for PERIOD;

 assert (VS = '1')

 report "VS went high at the wrong place!" severity ERROR;

 end loop;

 assert (VS = '1')

 report "VS was not detected!" severity ERROR;

 -- Load in the test counter value to check the end of frame
detection...

 TestLoad <= '1';
 wait for PERIOD;

 TestLoad <= '0';

VHDL Language Reference

132 TR0114 (v1.1) May 20, 2005

 for i in 0 to 300 loop

 Data <= RandomData();
 wait for PERIOD;

 end loop;

 assert (EOF = '1')

 report "EOF was not detected!" severity ERROR;

 done <= true;
 wait;

 End Process;

End stimulus;

In this example, the process labeled Clock1 uses a local variable (clktmp) to describe a repeating
clock with a period defined by the constant PERIOD. This clock is described with a while loop
statement, and it runs independent of all other processes in the test bench until the done signal is
asserted true. The second process, Stimulus1, describes a sequence of inputs to be applied to the
unit under test. It also makes use of loops – in this case for loops – to describe lengthy repeating
stimuli and expected value checks.

Writing test vectors
Another approach to creating test stimuli is to describe the test bench in terms of a sequence of fixed
input and expected output values. This sequence of values (sometimes called test vectors) could be
described using multi-dimensional arrays or using arrays of records. The following example makes use
of a record data type, test_record, which consists of the record elements CE, Set, Din and
CRC_Sum. An array type (test_array) is then declared, representing an unconstrained array of
test_record type objects. The constant test_vectors, of type test_array, is declared and
assigned values corresponding to the inputs and expected output for each desired test vector.
The test bench operation is described using a for loop within a process. This for loop applies the input
values Set and Din (from the test record corresponding to the current iteration of the loop) to the unit
under test. (The CE input is used within the test bench to enable or disable the clock, and is not passed
into the unit under test.) After a certain amount of time has elapsed (as indicated by a wait statement),
the CRC_Sum record element is compared against the corresponding output of the unit under test,
using an assert statement.

library ieee;

use ieee.std_logic_1164.all;

use work.crc8s; -- Get the design out of library 'work'

entity testcrc is

end testcrc;

architecture stimulus of testcrc is

 component crc8s

 port (Clk,Set,Din: in std_logic;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 133

 CRC_Sum: out std_logic_vector(15 downto 0));

 end component;

 signal CE: std_logic;

 signal Clk,Set: std_logic;

 signal Din: std_logic;

 signal CRC_Sum: std_logic_vector(15 downto 0);

 signal vector_cnt: integer := 1;

 signal error_flag: std_logic := '0';

 type test_record is record -- Declare a record type

 CE: std_logic; -- Clock enable

 Set: std_logic; -- Register preset signal

 Din: std_logic; -- Serial Data input
 CRC_Sum: std_logic_vector (15 downto 0); -- Expected result

 end record;

 type test_array is array(positive range <>) of test_record; -- Collect
them

-- in an array

 -- The following constant declaration describes the test vectors to be

 -- applied to the design during simulation, and the expected result
after a

 -- rising clock edge.
 constant test_vectors : test_array := (

 -- CE, Set, Din, CRC_Sum

('0', '1', '0', "----------------"), -- Reset

('1', '0', '0', "----------------"), -- 'H'

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '0', "0010100000111100"), -- x283C

('1', '0', '0', "----------------"), -- 'e'

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '0', "----------------"),

VHDL Language Reference

134 TR0114 (v1.1) May 20, 2005

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '1', "1010010101101001"), -- xA569

('1', '0', '0', "----------------"), -- 'l'

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '0', "0010000101100101"), -- x2165

('1', '0', '0', "----------------"), -- 'l'

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '0', "1111110001101001"), -- xFC69

('1', '0', '0', "----------------"), -- 'o'

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '0', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '1', "----------------"),

('1', '0', '1', "1101101011011010") -- xDADA

);
begin

 -- instantiate the component
 UUT: crc8s port map(Clk,Set,Din,CRC_Sum);

 -- provide stimulus and check the result
 testrun: process

 variable vector : test_record;

 begin

 for index in test_vectors'range loop

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 135

 vector_cnt <= index;

 vector := test_vectors(index); -- Get the current test vector

-- Apply the input stimulus...

 CE <= vector.CE;

 Set <= vector.Set;

 Din <= vector.Din;

 -- Clock (low-high-low) with a 100 ns cycle...

 Clk <= '0';
 wait for 25 ns;

 if CE = '1' then

 Clk <= '1';
 end if;

 wait for 50 ns;

 Clk <= '0';
 wait for 25 ns;

 -- Check the results...
 if (vector.CRC_Sum /= "----------------"

 and CRC_Sum /= vector.CRC_Sum) then

 error_flag <= '1';
 assert false

 report "Output did not match!"

 severity WARNING;

 else

 error_flag <= '0';
 end if;

 end loop;

 wait;

 end process;

end stimulus;

Notes
VHDL 1076-1993 broadened the scope of bit string literals somewhat, making it possible to enter
std_logic_vector data in non-binary forms as in the constant hexadecimal value x"283C".

VHDL Language Reference

136 TR0114 (v1.1) May 20, 2005

Reading and writing files with text I/O
The text I/O features of VHDL make it possible to open one or more data files, read lines from those
files, and parse the lines to form individual data elements, such as elements in an array or record. To
support the use of files, VHDL has the concept of a file data type, and includes standard, built-in
functions for opening, reading from, and writing to file data types. The textio package, which is
included in the standard library, expands on the built-in file type features by adding text parsing and
formatting functions, functions and special file types for use with interactive (“std_input” and
“std_output”) I/O operations, and other extensions.

The following example demonstrates how you can use the text I/O features of VHDL to read test data
from an ASCII file, using the standard text I/O features.

-- Test bench, VHDL '93 style

--
library ieee;

use ieee.std_logic_1164.all;

use std.textio.all;

use work.fib; -- Get the design out of library 'work'

entity testfib is

end entity testfib;

architecture stimulus of testfib is

 component fib is

 port (Clk,Clr: in std_logic;

 Load: in std_ulogic;

 Data_in: in std_ulogic_vector(15 downto 0);

 S: out std_ulogic_vector(15 downto 0));

 end component fib;

 function str_to_stdvec(inp: string) return std_ulogic_vector is

 variable temp: std_ulogic_vector(inp'range) := (others => 'X');

 begin

 for i in inp'range loop

 if (inp(i) = '1') then

 temp(i) := '1';
 elsif (inp(i) = '0') then

 temp(i) := '0';
 end if;

 end loop;

 return temp;

 end function str_to_stdvec;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 137

 function stdvec_to_str(inp: std_ulogic_vector) return string is

 variable temp: string(inp'left+1 downto 1) := (others => 'X');

 begin

 for i in inp'reverse_range loop

 if (inp(i) = '1') then

 temp(i+1) := '1';
 elsif (inp(i) = '0') then

 temp(i+1) := '0';
 end if;

 end loop;

 return temp;

 end function stdvec_to_str;

 signal Clk,Clr: std_ulogic;

 signal Load: std_ulogic;

 signal Data_in: std_ulogic_vector(15 downto 0);

 signal S: std_ulogic_vector(15 downto 0);

 signal done: std_ulogic := '0';

 constant PERIOD: time := 50 ns;

begin

 UUT: fib port map(Clk=>Clk,Clr=>Clr,Load=>Load,

 Data_in=>Data_in,S=>S);
 Clock: process

 variable c: std_ulogic := '0';

 begin

 while (done = '0') loop

 wait for PERIOD/2;

 c := not c;

 Clk <= c;
 end loop;

 end process Clock;

 Read_input: process

 file vector_file: text;

 variable stimulus_in: std_ulogic_vector(33 downto 0);

 variable S_expected: std_ulogic_vector(15 downto 0);

 variable str_stimulus_in: string(34 downto 1);

 variable err_cnt: integer := 0;

VHDL Language Reference

138 TR0114 (v1.1) May 20, 2005

 variable file_line: line;

 begin

 file_open(vector_file,"tfib93.vec",READ_MODE);
 wait until rising_edge(Clk);

 while not endfile(vector_file) loop

 readline (vector_file,file_line);

 read (file_line,str_stimulus_in) ;
 assert false

 report "Vector: " & str_stimulus_in

 severity note;

 stimulus_in := str_to_stdvec (str_stimulus_in);
 wait for 1 ns;

 --Get input side of vector...

 Clr <= stimulus_in(33);

 Load <= stimulus_in(32);
 Data_in <= stimulus_in(31 downto 16);

 --Put output side (expected values) into a variable...
 S_expected := stimulus_in(15 downto 0);

 wait until falling_edge(Clk);

 -- Check the expected value against the results...
 if (S /= S_expected) then

 err_cnt := err_cnt + 1;
 assert false

 report "Vector failure!" & lf &

 "Expected S to be " & stdvec_to_str(S_expected) & lf &

 "but its value was " & stdvec_to_str(S) & lf
 severity note;

 end if;

 end loop;

 file_close(vector_file);

 done <= '1';
 if (err_cnt = 0) then

 assert false

 report "No errors." & lf & lf

 severity note;

 else

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 139

 assert false

 report "There were errors in the test." & lf

 severity note;

 end if;

 wait;

 end process Read_input;

end architecture stimulus;

-- Add a configuration statement. This statement actually states the

-- default configuration, and so it is optional.
configuration build1 of testfib is

 for stimulus

 for DUT: fib use entity work.fib(behavior)

 port map(Clk=>Clk,Clr=>Clr,Load=>Load,

 Data_in=>Data_in,S=>S);
 end for;

 end for;

end configuration build1;

This test bench reads lines from an ASCII file and applies the data contained in each line as a test
vector to stimulate and test a simple Fibonacci sequence generator circuit. It begins with the by-now-
familiar entity-architecture pair:

This test bench reads files of text “dynamically” during simulation, so the test bench does not have to
be recompiled when test stimulus is added or modified. This is a big advantage for very large designs.

What does the test vector file that this test bench reads look like? The following example file content
describes one possible sequence of tests that could be performed using this test bench:

1000000000000000000000000000000000

0000000000000000000000000000000001

0000000000000000000000000000000001

0000000000000000000000000000000010

0000000000000000000000000000000011

0000000000000000000000000000000101

0000000000000000000000000000001000

0000000000000000000000000000001101

0000000000000000000000000000010101

0000000000000000000000000000100010

0000000000000000000000000000110111

0000000000000000000000000001011001

0000000000000000000000000010010000

VHDL Language Reference

140 TR0114 (v1.1) May 20, 2005

0000000000000000000000000011101001

0000000000000000000000000101111001

0000000000000000000000001001100010

0000000000000000000000001111011011

0000000000000000000000011000111101

0000000000000000000000101000011000

0000000000000000000001000001010101

0000000000000000000001101001101101

0000000000000000000010101011000010

0000000000000000000100010100101111

0000000000000000000110111111110001

0000000000000000001011010100100000

0000000000000000000010010100010001

0000000000000000000000000000000001

0000000000000000000000000000000001

0000000000000000000000000000000010

0000000000000000000000000000000011

0000000000000000000000000000000101

0000000000000000000000000000001000

This file could have been entered manually, using a text editor. Alternatively, it could have been
generated from some other software package or from a program written in C, Basic or any other
language. Reading text from files opens many new possibilities for testing and for creating interfaces
between different design tools.

Reading Non-tabular Data from Files
You can use VHDL's text I/O features to read and write many different built-in data types, including
such data types as characters, strings, and integers. This is a powerful feature of the language that you
will make great use of as you become proficient with the language.

VHDL's text I/O features are somewhat limited, however, when it comes to reading data that is not
expressed as one of the built-in types defined in Standard 1076. The primary example of this is when
you wish to read or write standard logic data types. In the previous example (the Fibonacci sequence
generator), type conversion functions were used to read standard logic input data as characters. This
method works fine, but it is somewhat clumsy. A better way to approached this common problem is to
develop a reusable package of functions for reading and writing standard logic data. Writing a
comprehensive package of such functions is not a trivial task. It would probably require a few days of
coding and debugging.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 141

VHDL Keywords
The following is a list of all keywords that exist in the standard VHDL language.

Keywords
Keyword: ABS

Keyword: ACCESS

Keyword: AFTER

Keyword: ALIAS

Keyword: ALL

Keyword: AND

Keyword: ARCHITECTURE

Keyword: ARRAY

Keyword: ASSERT

Keyword: ATTRIBUTE

Keyword: BEGIN

Keyword: BLOCK

Keyword: BODY

Keyword: BUFFER

Keyword: BUS

Keyword: CASE

Keyword: COMPONENT

Keyword: CONFIGURATION

Keyword: CONSTANT

Keyword: DISCONNECT

Keyword: DOWNTO

Keyword: ELSE

Keyword: ELSIF

Keyword: END

Keyword: ENTITY

Keyword: EXIT

Keyword: FILE

Keyword: FOR

Keyword: FUNCTION

Keyword: GENERATE

Keyword: GENERIC

Keyword: GROUP

VHDL Language Reference

142 TR0114 (v1.1) May 20, 2005

Keyword: GUARDED

Keyword: IF

Keyword: IMPURE

Keyword: IN

Keyword: INERTIAL

Keyword: INOUT

Keyword: IS

Keyword: LABEL

Keyword: LIBRARY

Keyword: LINKAGE

Keyword: LITERAL

Keyword: LOOP

Keyword: MAP

Keyword: MOD

Keyword: NAND

Keyword: NEW

Keyword: NEXT

Keyword: NOR

Keyword: NOT

Keyword: NULL

Keyword: OF

Keyword: ON

Keyword: OPEN

Keyword: OR

Keyword: OTHERS

Keyword: OUT

Keyword: PACKAGE

Keyword: PORT

Keyword: POSTPONED

Keyword: PROCEDURE

Keyword: PROCESS

Keyword: PURE

Keyword: RANGE

Keyword: RECORD

Keyword: REGISTER

Keyword: REJECT

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 143

Keyword: REM

Keyword: REPORT

Keyword: RETURN

Keyword: ROL

Keyword: ROR

Keyword: SELECT

Keyword: SEVERITY

Keyword: SHARED

Keyword: SIGNAL

Keyword: SLA

Keyword: SLL

Keyword: SRA

Keyword: SRL

Keyword: SUBTYPE

Keyword: THEN

Keyword: TO

Keyword: TRANSPORT

Keyword: TYPE

Keyword: UNAFFECTED

Keyword: UNITS

Keyword: UNTIL

Keyword: USE

Keyword: VARIABLE

Keyword: WAIT

Keyword: WHEN

Keyword: WHILE

Keyword: WITH

Keyword: XNOR

Keyword: XOR

VHDL Language Reference

144 TR0114 (v1.1) May 20, 2005

Keyword: ABS
The abs keyword is an absolute value operator which can be applied to any numeric type in an
expression.

Example
Delta <= abs(A-B)

Keyword: ACCESS
The access keyword declares an access subtype. Access subtypes are used like pointers to refer to
other objects. The objects which an access subtype can reference are array objects, record objects,
and scalar type objects.
An access declaration includes the reserved word access, followed by a subtype.

Example
type AddressPtr is access RAM;

Keyword: AFTER
The after keyword is used in signal assignment statements to indicate a delay value before a signal
assignment takes place.
A signal assignment statement containing an after clause includes – in this order – the name of the
signal object, the reserved signal assignment symbol “<=“, the optional keyword “transport”, an
expression specifying the value to be assigned to the signal, the reserved word “after”, and the delay
value (of type “time”) after which the signal assignment is to take place.
If no after clause is present in a signal assignment statement, an implicit “after 0ns” clause is
assumed.

Example
Clk <= not Clk after 50 ns;

...
Waveform <= transport '1' after 100 ps;

Keyword: ALIAS
An alias is an alternate name for an object. An alias is primarily used to create a slice (a one-
dimensional array referring to all or part) of an existing array. An alias is not a new object, but only an
alternate name for all or part of an existing object.

Example
alias LOWBYTE :std_logic_vector(7 downto 0) is Data1(7 downto 0);

...
alias HIGHBYTE :std_logic_vector(7 downto 0) is Data1(15 downto 8);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 145

Keyword: ALL
The all keyword is used in the following ways:

• in a use statement, to make all the items in a package visible,

• in an attribute specification, to refer to all the names in a name class,

• in a configuration specification (for) statement, to refer to all instances of a component, and

• in a signal disconnection specification, to refer to all signal drivers of the same type.

Example
use ieee_std_logic_1164.all;

...
for DUT: compare use entity work.compare(compare1);

Keyword: AND
The and keyword represents a logical “and” operator which can be used in an expression. The
expression “A and B” returns true only if both A and B are true.

Example
while error_flag /= '1' and done /= '1' loop

Keyword: ARCHITECTURE
The architecture keyword defines the internal details of a design entity.

An architecture body defines the relationships between the input and output elements of the entity. An
architecture body consists of a series of concurrent statements. An architecture body can also include
processes, functions, and procedures, each of which may include sequential statements. Although the
statements inside a process, for example, are executed sequentially, the process itself is treated within
the architecture body as a concurrent statement.

A given architecture can be associated with only one entity. However, a given entity may have more
than one architecture body.
An architecture statement includes – in this order – the following:

• the reserved word “architecture”, followed by :

(a) the name of the architecture,
(b) the reserved word “of”,
(c) the entity name, and
(d) the reserved word “is”,

• a declarations section,
• the reserved word “begin”,

• the architecture body (a series of concurrent statements as described above), and
• the reserved word “end”, followed optionally by the name of the architecture from (1)(a) above.

VHDL Language Reference

146 TR0114 (v1.1) May 20, 2005

Example
architecture sample_architecture of compare is

begin

GT <= '1' when A > B else '0';

LT <= '1' when A < B else '0';

EQ <= '1' when A = B else '0';

end sample_architecture;

Keyword: ARRAY
The array keyword is used to declare an array data type. An array is an object containing a collection
of elements that are all of the same type.

An array can be either constrained or unconstrained. A constrained array is defined with an index
defining the number of array elements. In an unconstrained array, the number of elements in the array
is specified in the array's object declaration, or the index definition for the array may be given in a
subtype declaration. Arrays may be one-dimensional (single index) or multi-dimensional (multiple
indices).

An array definition includes – in this order – the following:
• the reserved word “array”, followed by a definition(s) of the elements in the array, and

• the reserved word “of”, followed by the subtype of the array's elements.

Example
type DataWord is array (15 downto 0) of DataBit;

--Constrained

...
type BigWord is array (integer range <>) of DataBit;

 Unconstrained

Keyword: ASSERT
The assert keyword indicates the beginning of an assert statement. An assert statement checks to see
if a given condition is true and, if the statement is not true, performs some action.

An assert statement includes two options, either or both of which may be used:
• report – which displays a user-defined message if the given condition is false, and

• severity – which allows the user to choose a severity level if the given condition is false.

The four possible severity levels are: Note, Warning, Error, and Failure. The value of severity is
typically used to control the actions of a simulation in the event the given condition is false. For
example, a severity level of Failure may be used to stop the simulation.

Example
assert (S = S_expected)
report "S does not match the expected value!"
severity Error;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 147

Keyword: ATTRIBUTE
An attribute specification describes a characteristic of a given object. An attribute is most often used
to get additional information about an object. For example, an attribute may be used to find the width
of an array or to determine if a signal is in transition (i.e., has an event occurring on it).
if Clk'event then...

...

W = Data'width;

An attribute can be a constant, function, range, signal, type, or value. User-defined attributes are
always constants, no matter what type. The other five possibilities – function, range, signal, type, and
value – are pre-defined attributes.
An attribute declaration is used to declare an attribute name and its type. It includes – in this order –
the reserved word “attribute”, the name of the attribute, and the attribute's type.
attribute enum_encoding: string;

An attribute specification assigns a value to the attribute. It includes – in this order – the reserved word
“attribute”, the attribute's name, the reserved word “of”, an item name (which can be an architecture,
component, configuration, constant, entity, function, label, package, procedure, signal, subtype, type,
or variable), the name class of the item (e.g., architecture, component, configuration, etc.), the
reserved word “is”, and an expression.

Example
attribute enum_encoding of StateReg is

"0001 0011 0010 0110 0100 1100 1000";

Notes
An attribute name must be declared in an attribute declaration before it can be used in an attribute
specification.

Keyword: BEGIN
The begin keyword specifies the start of the main body of statements in an architecture, function,
procedure, process or block.

Example
architecture example of control_stmts is

begin

 m <= b when a else c;

end example;

VHDL Language Reference

148 TR0114 (v1.1) May 20, 2005

Keyword: BLOCK
Block is a concurrent statement used to represent a portion of a design. Block statements may also
include an optional Guard feature which allows the user to disable signal drivers within the block when
a specified Guard condition is false.

A block statement includes – in this order – the following:

• block label,
• the reserved word “block”,
• optionally, a Boolean guard expression (for example, TESTCOUNT<5),

• a block header, which specifies the interface of the block with its environment,

• a block declarations section,
• the reserved word “begin”,

• the block statements, and
• the reserved words “end block”, optionally followed by the block label (which, if used, must be the

same as the block label declared above).

When a guard expression is used, a signal driver can be disabled by inserting the reserved word
“guarded” at the beginning of the right side of the signal driver statement. For example, based on the
example in (3) above, the block statement:

SAMPLE <= guarded D;

will cause the signal SAMPLE to take on the value of D only when TESTCOUNT<5. Otherwise, no action
on that assignment statement will be taken.

Example
TESTPARITY: block

 signal Atmp,Btmp; -- Local signals

begin

 Atmp <= gen_parity(A);

 Btmp <= gen_parity(B);
 ParityEQ <= '1' when Atmp = Btmp else '0';

end block TESTPARITY;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 149

Keyword: BODY
The body keyword is used in conjunction with the package keyword to declare a package body. A
package body specifies the definitions of the various subprograms (components, functions, etc.) that
are declared by its associated package declaration.

The package body must have the same name as the package declaration. Only one package body
can be associated with each package declaration.

Example
package body conversions is

 function to_unsigned (a: std_ulogic_vector) return

 integer is

 ...
 begin

 ...
 end to_unsigned;

 function to_vector (size: integer; num: integer) return

 std_ulogic_vector is

 ...
 begin

 ...
 end to_vector;

end conversions;

Keyword: BUFFER
Buffer is one of five possible modes for an interface port. (The other four are in, out, inout, and
linkage.) The buffer mode indicates a port which can be used for both input and output, and it can
have only one source. A buffer port can only be connected to another buffer port or to a signal that
also has only one source.

Example
entity ent5 is

 port (clk,reset : in std_logic;

 p : buffer std_logic_vector(1 downto 0));

end ent5 ;

VHDL Language Reference

150 TR0114 (v1.1) May 20, 2005

Keyword: BUS
Bus specifies one of two kinds of signals used in a signal declaration (the other is register). A bus
signal represents a hardware bus and defaults to a user-specified value when all of the signal's drivers
are turned off.

Example
entity tbuf is

 port (enable: boolean; a: bundle; m: out bundle bus);

end tbuf;

Keyword: CASE
Case is a sequential statement used within a process, procedure or function that selects and executes
one statement sequence among a list of alternatives, based on the value of a given expression. The
expression must be of a discrete type or a one-dimensional array type.
A case statement includes – in this order – the following:

• the reserved word “case”,

• the expression to be evaluated,
• the reserved word “is”,

• the reserved word “when” followed by a choice and the sequence of statements to be executed if
the expression evaluates to be that choice,

• optionally, subsequent “when” statements similar to above,

• optionally, the reserved words “when others” followed by the sequence of statements to be
executed if the expression evaluates to be any value other than those specified in the “when”
statements above,

• the reserved words “end case”.

Because the case statement chooses one and only one alternative for execution, all possible values for
the expression must be covered in “when” statements.

A case statement is distinguished from a chain of if-then-else statements in that no priority is implied
for the conditions specified.

Example
case current_state is

 when IDLE =>

 if start_key = '1' then

 current_state <= READ0;
 end if;

 when READ0 =>

 current_state <= READ1;
 when READ1 =>

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 151

 current_state <= READX;
 when READX =>

 current_state <= WRITE0;
 when WRITE0 =>

 current_state <= WRITEX;
 when WRITEX =>

 current_state <= IDLE;
end case;

Keyword: COMPONENT
A component declaration is used to define the interface to a lower-level design entity. The component
may then be included in a component instantiation statement which itself is included in an architecture
body, thus allowing one entity to be used as part of another entity. The component declaration must
be placed in the declaration section of the architecture body, or in a package visible to the architecture.

Example
component my_adder

 port(A,B,Cin: in std_ulogic;

 Sum,Cout: out std_ulogic);

end component;

Keyword: CONFIGURATION
A declaration used to create a configuration for an entity. A configuration declaration for a given
entity binds one architecture body to the entity and can bind components of architecture bodies within
that entity to other entities. In a given configuration declaration for an entity, only one architecture body
can be bound to that entity. However, one entity can have many configurations.

Example
configuration this_build of adder is

use work.all;

for structure

 for A1,A2,A3: AddBlock

 use entity FullAdd(behavior);

 end for;

end for;

end this_build;

VHDL Language Reference

152 TR0114 (v1.1) May 20, 2005

Keyword: CONSTANT
The constant keyword declares a constant of a type specified in the constant declaration.

A constant declaration includes – in this order – the reserved word “constant”, the name of the
constant, the optional reserved word “in”, the type of the constant, and, optionally, an expression for
the value of the constant.

If an expression for the value of the constant is not included in the constant declaration, then the
constant is referred to as a deferred constant. A deferred constant may only be included in a package
declaration, while the complete constant declaration, including the expression which defines its value,
must be included in the package body.

Example
constant RESET: std_ulogic_vector(7 downto 0) := "00000000";

...
constant PERIOD: time := 80 ns;

Keyword: DISCONNECT
The disconnect keyword specifies the time delay to disconnect the guarded feature of a signal which
is part of a guarded signal statement.
A disconnect statement includes – in this order – the reserved word “disconnect”, the name of the
guarded signal, the guarded signal's type, the reserved word “after”, and a time expression specifying
the time after which the guard feature should be disconnected.
In place of the guarded signal's name, the reserved words “others” or “all” may be used. “Others”
refers to all other signal statements in the immediately enclosing declarative region which have not
been specified in a separate disconnect statement. “All” refers to all other signal statements in the
declarative region.

Example
architecture sample_architecture of test1 is

signal input_data_bus : resolved_word bus;

disconnect input_data_bus : resolved_word after 6ns;

begin

...
end sample_architecture;

Notes
A given signal driver can have only one disconnect statement.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 153

Keyword: DOWNTO
The downto keyword is used to indicate a descending range in a range statement or other statement
which includes a range (for example, an array type declaration). (The reserved word “to” is used to
indicate an ascending range.)

Example
signal A0,A1: std_logic_vector(15 downto 0);

Keyword: ELSE
The else keyword is used to identify the final alternative in an if or when statement.

Example
if A > B then

 Compare <= GT;
elsif A < B then

 Compare <= LT;
else

 Compare <= EQ;
end if;

Keyword: ELSIF
The elsif keyword is used to identify an interim alternative in an if statement.

Example
if A > B then

 Compare <= GT;
elsif A < B then

 Compare <= LT;
else

 Compare <= EQ;
end if;

VHDL Language Reference

154 TR0114 (v1.1) May 20, 2005

Keyword: END
The end keyword specifies the end of an architecture, configuration, entity, function, package, package
body or procedure.

Example
architecture sample_architecture of compare is

begin

GT <= '1' when A > B else '0';

LT <= '1' when A < B else '0';

EQ <= '1' when A = B else '0';

end sample_architecture;

Notes
The end keyword is also used in conjunction with other keywords to signify the end of a specific
declaration or statement. The following sections illustrate examples of such usage:

END BLOCK
TESTPARITY: block

 signal Atmp,Btmp; -- Local signals

begin

 Atmp <= gen_parity(A);

 Btmp <= gen_parity(B);
 ParityEQ <= '1' when Atmp = Btmp else '0';

end block TESTPARITY;

END CASE
case current_state is

 when IDLE =>

 if start_key = '1' then

 current_state <= READ0;
 end if;

 when READ0 =>

 current_state <= READ1;
 when READ1 =>

 current_state <= READX;
 when READX =>

 current_state <= WRITE0;
 when WRITE0 =>

 current_state <= WRITEX;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 155

 when WRITEX =>

 current_state <= IDLE;
end case;

END COMPONENT
component my_adder

 port(A,B,Cin: in std_ulogic;

 Sum,Cout: out std_ulogic);

end component;

END FOR
configuration build1 of testfib is

 for stimulus

 for DUT: fib use entity work.fib(behavior)

 port map(Clk=>Clk,Clr=>Clr,Load=>Load,

 Data_in=>Data_in,S=>S);
 end for;

 end for;

end configuration build1;

END GENERATE
G: for I in 0 to (WIDTH - 2) generate

 -- This generate statement creates the first

 -- XOR gate in the series...
 G0: if I = 0 generate

 X0: xor2 port map(A => D(0), B => D(1), Y => p(0));

 end generate G0;

 -- This generate statement creates the middle

 -- XOR gates in the series...
 G1: if I > 0 and I < (WIDTH - 2) generate

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i));

 end generate G1;

 -- This generate statement creates the last

 -- XOR gate in the series...
 G2: if I = (WIDTH - 2) generate

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD);

 end generate G2;

end generate G;

VHDL Language Reference

156 TR0114 (v1.1) May 20, 2005

END IF
if A > B then

 Compare <= GT;
elsif A < B then

 Compare <= LT;
else

 Compare <= EQ;
end if;

END LOOP
loop1: for state in stateval loop

 if current_state = state then

 valid_state <= true;
 end if;

end loop loop1;

...
process

begin

 while error_flag /= '1' and done /= '1' loop

 Clock <= not Clock;

 wait for CLK_PERIOD/2;

 end loop;

end process;

END PROCESS
reg: process(Rst,Clk)

 variable Qreg: std_ulogic_vector(0 to 7);

begin

 if Rst = '1' then -- Async reset

 Qreg := "00000000";
 elsif rising_edge(Clk) then

 if Load = '1' then
 Qreg := Data;
 else
 Qreg := Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 Q <= Qreg;
end process;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 157

END RECORD
type test_record is record

 CE: std_ulogic; -- Clock enable

 Set: std_ulogic;

 Din: std_ulogic;
 CRC_Sum: std_ulogic_vector (15 downto 0);

end record;

END UNITS
type time isrange -2_147_483_647 to 2_147_483_647

 units

 fs;

 ps = 1000 fs;

 ns = 1000 ps;

 us = 1000 ns;

 ms = 1000 us;

 sec = 1000 ms;

 min = 60 sec;

 hr = 60 min;
 end units;

Keyword: ENTITY
An entity declaration used to describe the interface of a design entity.

A design entity is an abstract model of a digital system. A design entity includes:

• an entity declaration (which specifies the name of the entity and its interface ports), and

• at least one architecture body (which models the internal workings of the digital system).
An entity declaration includes – in this order – the reserved word “entity”, the entity's name, the
reserved word “is”, the following optional statements:

• the reserved word “generic” followed by a list of generics and their types,

• the reserved word “port” followed by a list of interface port names and their types,

• any declaration of entity items,
• the reserved word “begin” followed by appropriate entity declaration statements, and

• non-optionally, the reserved word “end” followed (optionally) by the entity's name.

The ports of an entity are visible within the architecture(s) of the entity, and may be referenced (have
their values read, or have values assigned to them, depending on their mode) as signals within the
architecture(s).
Declarations made within an entity statement are visible within the corresponding architecture(s).

VHDL Language Reference

158 TR0114 (v1.1) May 20, 2005

Example
entity Mux is

generic(RISE, FALL: time := 0 ns);

port(A,B: in std_ulogic;

 Sel: in std_ulogic;

 Y: out std_ulogic);

end Mux;

Keyword: EXIT
The exit keyword is a sequential statement used in a loop to cause execution to jump out of the loop.

An exit statement can only be used in a loop and can include an optional when condition. An exit
statement includes – in this order – the reserved word “exit”, an optional loop identifier (if no identifier
is given, the exit statement is applied to the loop in which the exit statement occurs), and, optionally,
the reserved word “when” followed by the condition under which the exit action is to be executed.

Example
for idx in vectors'range loop

 apply_vector(vec(idx));
 wait for PERIOD;

 if done = '1' then

 exit;

 end if;

end loop;

Keyword: FILE
The file keyword declares a file.

A file declaration includes – in this order – the reserved word “file”, the name of the file (as used by the
program), the subtype indicator (which must define a file subtype), the reserved word “is”, on optional
mode indicator (which must be either “in” or “out”), and the file's external name (which must be a string
expression and is surrounded by quote marks). If no mode is specified, the default is “in”.

Example
file vector_file: text is in "VECTOR.DAT";

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 159

Keyword: FOR
The for keyword is a statement used to identify:

• a block specification in a block configuration,

• a component specification in a component configuration,

• a parameter specification in a generate statement,

• a parameter specification in a loop statement, or

• a time expression in a wait statement.

Example
configuration build1 of testfib is

 for stimulus

 for DUT: fib use entity work.fib(behavior)

 port map(Clk=>Clk,Clr=>Clr,Load=>Load,

 Data_in=>Data_in,S=>S);
 end for;

 end for;

end configuration build1;

Keyword: FUNCTION
A function statement defines a group of sequential statements that return a single value.

A function specification includes – in this order – the reserved word “function”, the function's name, a
parameter list (which can only include constants and signal objects, and must all be of mode in), the
reserved word “return”, and the type of the value to be returned by the function.

Example
function to_unsigned (a: std_ulogic_vector)

 return integer is

 alias av: std_ulogic_vector (1 to a'length) is a;

 variable ret,d: integer;

begin
 d := 1;
 ret := 0;
 for i in a'length downto 1 loop
 if (av(i) = '1') then
 ret := ret + d;
 end if;
 d := d * 2;
 end loop;
 return ret;
end to_unsigned;

VHDL Language Reference

160 TR0114 (v1.1) May 20, 2005

Keyword: GENERATE
The generate keyword is used to do one of the following:

• replicate a set of concurrent statements (a for-generation), or

• selectively execute a set of concurrent statements if a specified condition is met (an if-generation).

A generate statement used to replicate a set of concurrent statements includes – in this order – the
following:
• a label for the generate, followed by the reserved word “for”, followed by a parameter specification

for the “for”,
• the reserved word “generate”,

• the concurrent statements to be replicated,
• the reserved words “end generate”.

A generate statement used to selectively execute a set of concurrent statements includes – in this
order – the following:
• a label for the generate, followed by the reserved word “if”, followed by the condition for the “if”,
• the reserved word “generate”,

• the concurrent statements to be selectively executed if the test condition is true,
• the reserved words “end generate”.

Example
G: for I in 0 to (WIDTH - 2) generate

 -- This generate statement creates the first

 -- XOR gate in the series...
 G0: if I = 0 generate

 X0: xor2 port map(A => D(0), B => D(1), Y => p(0));

 end generate G0;

 -- This generate statement creates the middle

 -- XOR gates in the series...
 G1: if I > 0 and I < (WIDTH - 2) generate

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i));

 end generate G1;

 -- This generate statement creates the last

 -- XOR gate in the series...
 G2: if I = (WIDTH - 2) generate

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD);

 end generate G2;

end generate G;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 161

Keyword: GENERIC
The generic keyword used in a component or configuration to define constants whose values may be
controlled by the environment.
A generic statement includes – in this order – the reserved word “generic”, followed by a list of
declarations for the generics being defined.

Example
generic(RISE, FALL: time := 0 ns);

Keyword: GROUP
The group keyword is used to define a group template or specific group. Groups may be used to give
a name to a collection of named entities.

Group Template Declaration
A group template declaration includes – in this order – the reserved word “group” followed by a group
name, the reserved word “is”, and a list of classes enclosed in parentheses.

Example
group signal_pair is (signal1, signal2); -- group of two signals

Group Declaration

A group declaration includes – in this order – the reserved word “group” followed by a group name, the
character “:”, a group template name, and a list of named entities enclosed in parentheses.

Example
group G1: signal_pair(Clk1,Clk2);

Keyword: GUARDED
The guarded keyword is used to limit the execution of a signal statement within a block when the block
includes a guard statement.

Example
use ieee.std_logic_1164.all;
entity latch is
 port(D, LE: in std_logic;
 Q, QBar: out std_logic);
end latch;
architecture mylatch of latch is
begin
 L1: block (LE = '1')
 begin
 Q <= guarded D after 5 ns;
 QBar <= guarded not(D) after 7 ns;
 end block L1;
end mylatch;

VHDL Language Reference

162 TR0114 (v1.1) May 20, 2005

Keyword: IF
The if keyword is a sequential statement used for describing conditional logic.

Example
if A > B then

 Compare <= GT;
elsif A < B then

 Compare <= LT;
else

 Compare <= EQ;
end if;

Notes
The condition expression of an if statement must be a Boolean logic expression (meaning that it must
evaluate to a True or False value).
If statements are sequential and may only be used in processes, procedures or functions.

Keyword: IMPURE
The impure keyword is used to declare a function that may return a different value given the same
actual parameters, due to side effects.

Impure functions have access to a broader class of values than pure functions, and can modify objects
that are outside their own scope.

Example
impure function HoldCheck (Clk, Data) return Boolean;

Keyword: IN
The in keyword can be used in two different ways depending on the context:

• One of five possible modes for an interface port (the other four are inout, out, buffer, and linkage);
the in mode indicates a port which can be used only for input; and

• An optional word in a constant declaration.

Example
component COUNT4EN

 port (CLK,RESET,EN : in std_logic;

 COUNT : out std_logic_vector(3 downto 0)

);
end component;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 163

Keyword: INERTIAL
The inertial keyword is used to specify that a delay is inertial. In the absence of an inertial or
transport keyword, the delay is assumed to be inertial.

Example
Qout <= A and B inertial after 12 ns;

Keyword: INOUT
The inout keyword specifies one of five possible modes for an interface port. (The other four are in,
out, buffer, and linkage.) The inout mode indicates a port which can be used for both input and
output.

Example
procedure jkff (signal Rst, Clk: in std_logic;

 signal J, K: in std_logic;

 signal Q,Qbar: inout std_logic) is

begin

 if Rst = '1' then

 Q <= '0';
 elsif Clk = '1' and Clk'event then

 if J = '1' and K = '1' then

 Q <= Qbar;
 elsif J = '1' and K = '0' then

 Q <= '1';
 elsif J = '0' and K = '1' then

 Q <= '0';
 end if;

 end if;

 Qbar <= not Q;

end jkff;

Keyword: IS
The is keyword is used as part of the syntax when declaring, for example, an architecture, case
statement, configuration, entity, function, package, package body, procedure, subtype or type.

Example
architecture arch2 of my_design is
 signal Bus1, Bus2: std_logic_vector(7 downto 0);
begin
 . . .
end declare;

VHDL Language Reference

164 TR0114 (v1.1) May 20, 2005

Keyword: LABEL
The label keyword is used to specify a label name in an attribute statement.

Example
attribute CHIP_PIN_LC of u0 : label is "LAB2";

attribute CHIP_PIN_LC of u2 : label is "LAB7";

Keyword: LIBRARY
The library keyword identifies a library. The library statement is a context clause used to identify
libraries from which design units can be referenced.
A library statement includes – in this order – the reserved word “library” followed by a list of library
logical names.

Example
library std_logic_1164; -- Use the IEEE 1164 standard library

Notes
Using a library clause makes a named library visible to the working environment. However, to use a
design unit from within that library, a “use” statement must also be included specifying the design unit
to be used.

All design units automatically include the following implicit library clause:

library STD, WORK;

Keyword: LINKAGE
The linkage keyword specifies one of five possible modes for an interface port. (The other four are in,
out, inout, and buffer.)
The linkage mode indicates a port which can be used for both input and output, and it can only
correspond to a signal.

Keyword: LITERAL
The literal keyword is used in group template declarations.

Keyword: LOOP
The loop keyword executes a series of sequential statements multiple times.

A loop statement can include either:
• a “while” iteration scheme,

• a “for” iteration scheme, or

• no iteration scheme.
A loop statement using a “while” iteration scheme includes – in this order – the following:

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 165

• an optional loop label,
• the reserved word “while”, followed by the condition which controls whether the series of sequential

statements within the loop is executed, followed by the reserved word “loop”,

• the series of sequential statements to be executed if the test condition evaluates to be True,
• the reserved words “end loop”, followed by an optional loop label (which, if used, must be the same

as the loop label declared above.

Example
while (I < DBUS'length) loop

...

I := I + 1;
end loop;

A loop statement using a “for” iteration scheme includes – in this order – the following:

• an optional loop label,
• the reserved word “for”, followed by a parameter specification for the “for”, followed by the reserved

word “loop”,

• the series of sequential statements to be executed for the instances defined in the parameter
specification,

• the reserved words “end loop”, followed by an optional loop label, which, if used, must be the same
as the loop label declared above.

Example
for I in 0 to DBUS'length - 1 loop

...
end loop;

A loop statement with no iteration scheme includes – in this order – the following:

• an optional loop label,
• the reserved word “loop”,

• the series of sequential statements to be executed,
• the reserved words “end loop”, followed by an optional loop label, which, if used, must be the same

as the loop label declared above.

A loop statement with no iteration scheme continues to execute until some action causes execution to
cease. This could be done using an “exit” statement, a “next” statement, or a “return” statement
within the loop.

Example
loop

exit when I = DBUS'length;

I := I + 1;
end loop;

VHDL Language Reference

166 TR0114 (v1.1) May 20, 2005

Keyword: MAP
The map keyword is used in conjunction with the port and generic keywords to declare a port map or
generic map respectively.

Port Map
A port map statement is used to associate signals of ports within a block to ports defined outside the
block.

For example, suppose a given entity includes an architecture, and the architecture includes a block. A
port map statement could be used to set the value of an entity port (which was defined by a “port”
statement in the entity declaration), equal to the value of a block port (which was defined by a “port”
statement in the block).
A port map statement includes – in this order – the reserved words port and map followed by an
association list (e.g., “LOCAL_PORT => GLOBAL_PORT”). The association list may use positional or
named association, as shown in the following examples. Ports may be left unconnected through the
use of the open keyword.

Example
U1: And2 port map (IN1, IN2, OUT1);

U1: And2 port map (A => IN1, B => IN2, Y => OUT1);

A18: AddBlk port map (A => A1, B => A1, S => Sum, Cout =>open);

Generic Map
A generic map statement is used to associate values of constants within a block to constants defined
outside the block.

For example, suppose a given entity includes an architecture, and the architecture includes a block. A
generic map statement could be used to set the value of an entity constant (which was defined by a
“generic” statement in the entity declaration), equal to the value of a block constant (which was defined
by a “generic” statement in the block).

A generic map statement includes – in this order – the reserved words generic and map followed by
an association list (e.g., “LOCAL => GLOBAL”).

Example
U1: And2
 generic map (RISE_TIME => 2 ns, FALL_TIME => 2 ns);

 port map (A => IN1, B => IN2, Y => OUT1);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 167

Keyword: MOD
The mod keyword is a modulus operator that can be applied to integer types. The result of the
expression “A mod B” is an integer type and is defined to be the value such that:

• the sign of (A mod B) is the same as the sign of B, and

• abs (A mod B) < abs (B), and

• (A mod B) = (A * (B - N)) for some integer N.

Example
begin
 for i in 0 to (bits-1) loop
 if ((tmp mod 2) = 1) then
 out_vec(i) := '1';
 end if;
 tmp := tmp/2;
 end loop;
 return out_vec;
end int_2_v;

Keyword: NAND
Nand is a logical “not and” operator which can be used in an expression. It produces the opposite of
the logical negation of the “and” operator.
The expression “A nand B” returns True when

• A is false, or

• B is false, or

• both A and B are false.

Example
begin
 Y <= (A nand B) and Sel;
 Y <= (A nor B) and not Sel;
end;

Keyword: NEW
The new keyword is used to create an object of a specified type and return an access value that refers
to the created object.

A new statement includes – in this order – the allocator (which, when evaluated, refers to the created
object), followed by the reserved symbol “:=“, followed by the reserved word “new”, followed by the
type of the object being created, and optionally followed by the reserved “new” and an expression for
the initial value of the object being created.

Example
count:= new natural;

VHDL Language Reference

168 TR0114 (v1.1) May 20, 2005

Keyword: NEXT
Next is a statement allowed within a loop that causes the current iteration of the loop to be terminated
and cycles the loop to the beginning of its next iteration.
A next statement includes – in this order – the reserved word “next”, an optional loop label (which must
be the same as the label of the loop in which the next statement occurs), and, optionally, the reserved
word “when” followed by a condition which, when True, causes the next statement to be executed.

If a “when” clause is not included, a “next” statement is executed as soon as it is encountered.

Example
L1 : for i in 0 to 9 loop

 L2 : for j in opcodes loop

 for k in 4 downto 2 loop -- loop label is optional

 if k = i next L2; -- go to next L2 loop

 end loop;

 exit L1 when j = crash; -- exit loop L1

 end loop;

end loop;

Keyword: NOR
Nor is a logical “not or” operator which can be used in an expression. It produces the logical negative
of the “or” operator. The expression “A nor B” returns True only when both A and B are false.

Example
begin

 Y <= (A nand B) and Sel;

 Y <= (A nor B) and not Sel;

end;

Keyword: NOT
Not is a logical “not” operator which can be used in an expression. The expression “not A” returns
True if A is false and returns False if A is true.

Example
begin

 Y <= not (A and B) and Sel;

 Y <= not (A or B) and not Sel;

end arch4;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 169

Keyword: NULL
Null is a statement that performs no action.

The null statement can be used in situations where it is necessary to explicitly specify that no action is
needed. For example, a null statement may be useful in a case statement where all alternatives must
be specified but where no action may be required for some alternatives.

Example
D1 <= '0'; -- Default values...
Strobe <= '0';
Rdy <= '0';
case current_state is
 when S0 =>
 D1 <= '1';
 when S1 =>
 Strobe <= '1';
 when S2 =>
 Rdy <= '1';
 when others =>
 null;
end case;

Keyword: OF
The of keyword is used as part of the syntax when declaring, for example, an architecture, array,
attribute or configuration.

Example
architecture arch1 of my_design is
 signal Q: std_logic;
begin
 . . .
end arch1;

Keyword: ON
The on keyword is used as part of a wait statement to temporarily suspend a process until an event
occurs which affects one or more specified signals. The process will resume when any or all of the
listed signals change.

Example
Example: process is
begin
 sum <= a xor b after time_period;
 carry <= a and b after time_period;
 wait on a, b;
end process Example;

VHDL Language Reference

170 TR0114 (v1.1) May 20, 2005

Keyword: OPEN
The open keyword is used in an association list (within a component instantiation statement) to
indicate a port that is not connected to any signal.

Example
U2: count8 port map (C => Clk1, Rst => Clr, L => Load, D => Data,

 Q => , Cin => open);

Keyword: OR
Or is a logical “or” operator that can be used in an expression. The expression “A or B” returns True
if
• A is true, or

• B is true, or

• both A and B are true.

Example
begin

 Y <= not (A and B) and Sel;

 Y <= not (A or B) and not Sel;

end;

Keyword: OTHERS
The others keyword is used to specify all remaining elements in:

• an element association (in an aggregate),

• an attribute specification,

• a configuration specification,

• a disconnection specification,

• case statement, or

• a selected assignment

Example
when others => null;

...
constant ZERO: std_ulogic_vector (A'left to A'right) := (others=>0);

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 171

Keyword: OUT
The out keyword specifies one of five possible modes for an interface port. (The other four are in,
inout, buffer, and linkage.)

The out mode indicates a port which can be used only for output.

Example
component COUNT4EN

 port (CLK,RESET,EN : in std_logic;

 COUNT : out std_logic_vector(3 downto 0)

);
end component;

Keyword: PACKAGE
The package keyword specifies a set of declarations which can include the following items: aliases,
attributes, components, constants, files, functions, types, and subtypes. A package declaration can
also include attribute specifications, disconnection specifications, and use clauses.

By grouping common declarations in a package declaration, the package declaration can be imported
and used in other design units.

Example
package conversions is

 function to_unsigned (a: std_ulogic_vector) return

 integer;
 function to_vector (size: integer; num: integer) return

 std_ulogic_vector;
end conversions;

Keyword: PORT
The port keyword is used in a configuration to define the input and output ports of an entity. A port
statement includes – in this order – the reserved word “port”, followed by a list of declarations for the
port signals being defined.

Example
entity Mux is

 port(A,B: in std_ulogic;

 Sel: in std_ulogic;

 Y: out std_ulogic);

end Mux;

VHDL Language Reference

172 TR0114 (v1.1) May 20, 2005

Keyword: POSTPONED
The postponed keyword is used to declare a process as a postponed process.

Postponed processes do not execute until the final simulation cycle at the currently modeled time.

Example
P1: postponed process (D,Snd,Int)

begin

 -- Statements are postponed to end of simulation cycle
end postponed process;

Keyword: PROCEDURE
A procedure is a group of sequential statements that are to be executed when the procedure is called.

A procedure does not have a return value, but instead can return any number of values (or no values)
via its parameter list. Parameters of a procedure must have a mode associated with them (e.g. in, out,
inout). Values are returned by using mode out or mode inout.
A procedure specification includes – in this order – the reserved word “procedure”, the procedure
name, and a list of the procedure's parameters (which may be constants, signals, or variables, each of
whose modes may be in, out, or inout).

Example
procedure dff (signal Clk,Rst,D; in std_ulogic;

 signal Q: out std_ulogic) is

 begin

 if Rst <= '1' then

 Q <= '0';
 elsif rising_edge(Clk) then

 Q <= D;
 end if;

end procedure;

Keyword: PROCESS
The process keyword defines a sequential process intended to model all or part of a design entity.

A process statement includes – in this order – an optional sensitivity list, a declarations section, a
“begin” statement, the sequential statements describing the operation of the process, and an “end”
statement.

The sensitivity list identifies signals to which the process is sensitive. Whenever an event occurs on an
item in the sensitivity list, the sequential instructions in the process are executed. If no sensitivity list is
provided, the process executes until suspended by a wait statement.

In addition to signal and variable assignments, the sequential statements in the body of the process
can include the following: assertion, case, exit, if, loop, next, null, procedure, return, and wait.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 173

Example
reg: process(Rst,Clk)

 variable Qreg: std_ulogic_vector(0 to 7);

begin

 if Rst = '1' then -- Async reset

 Qreg := "00000000";
 elsif rising_edge(Clk) then

 if Load = '1' then

 Qreg := Data;
 else

 Qreg := Qreg(1 to 7) & Qreg(0);

 end if;

 end if;

 Q <= Qreg;
end process;

Keyword: PURE
The pure keyword is used to declare a pure function. Pure functions always return the same value for
a given set of input actual parameters, and have no side effects.
Pure is assumed if there is no pure or impure keyword.

Example
pure function HoldCheck (Clk, Data) return Boolean;

Keyword: RANGE
The range keyword is used to define a range constraint for a scalar type.

A range statement includes – in this order – the reserved word “range”, the name of the range, and,
optionally, two simple expressions for the outer bounds of the range separated by either the reserved
word “to” (the ascending direction indicator) or the reserved word “downto” (the descending direction
indicator).

Example
variable Q: integer range 0 to 15;

VHDL Language Reference

174 TR0114 (v1.1) May 20, 2005

Keyword: RECORD
The record keyword is used to declare a record type and its corresponding element types.

A record statement includes – in this order – the following:
• the reserved word “record”,

• an element declaration which includes – in this order – one or more identifiers which share a
common subtype, followed by identification of that subtype,

• optionally, additional element declarations of the form specified above, and
• the reserved words “end record”.
An element declaration that includes more than one identifier (for example, “COUNT, SUM, TOTAL:
INTEGER”) is equivalent to a series of single element declarations.

Example
type test_record is record

 CE: std_ulogic; -- Clock enable

 Set: std_ulogic;

 Din: std_ulogic;
 CRC_Sum: std_ulogic_vector (15 downto 0);

end record;

type test_array is array(positive range <>) of test_record;

Keyword: REGISTER
Register is one of two kinds of signals used in a signal declaration (the other is bus).

A register signal represents a hardware storage register and defaults to its last driven value when all of
the signal's drivers are turned off.

Example
signal storage_state : resolve_state state_type register := state_one;

Keyword: REJECT
The reject keyword is used to specify the minimum pulse width to propagate as a result of an after
clause.

If no reject time is specified, the specified delay time is assumed for the reject time.

Example
Q <= Data reject 2 ns after 7 ns; -- Delay is 7 ns, reject time is 2 ns

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 175

Keyword: REM
The rem operator is a remainder operator that can be applied to integer types. The result of the
expression “A rem B” is an integer type and is defined to be the value such that:

• the sign of (A rem B) is the same as the sign of A, and

• abs (A rem B) < abs (B), and

• (A rem B) = (A - (A / B) * B).

Example
begin

 for i in 0 to (bits-1) loop

 if ((tmp rem 2) = 1) then

 out_vec(i) := '1';
 end if;

 tmp := tmp/2;
 end loop;

 return out_vec;

end int_2_v;

Keyword: REPORT
The report keyword is an option that can be defined as part of an assert statement. It allows a user-
defined message to be displayed if the given condition of the statement is false.

Example
assert (S = S_expected)
report "S does not match the expected value!"
severity Error;

The report keyword can also be used within a loop for debugging purposes. A message will be
reported to the screen at each iteration of the loop.

Example
architecture example of loop_stmt is
begin
 process (a)
 variable b: integer;
 begin
 b := 1;
 while b < 7 loop
 report "Loop number = " & integer'image(b);
 b := b + 1;
 end loop;
 end process;
end example;

VHDL Language Reference

176 TR0114 (v1.1) May 20, 2005

Keyword: RETURN
Return is a sequential statement used at the end of a subprogram (a function or procedure) to
terminate the subprogram and return control to the calling object.
When used in a procedure, the reserved word “return” appears alone.

When used in a function, the reserved word “return” must be followed by an expression which defines
the result to be returned by the function. The expression's type must be the same type as specified by
the return statement in the function's specification.

A return statement must be the last statement executed in a function.

Example
function rising_edge (signal s: std_logic) return boolean is

begin

 return (s'event and (To_X01(s) = '1') and

 (To_X01(s'last_value) = '0'));
end rising_edge;

Keyword: ROL
Rol is the rotate left operator. Each bit in the left operand is shifted left by the number of bits specified
in the right operand. Bits in the left-most positions of the operand are shifted to the right-most bits of
the operand.

Example
Sreg <= Sreg rol 2;

Keyword: ROR
Ror is the rotate right operator. Each bit in the left operand is shifted right by the number of bits
specified in the right operand. Bits in the right-most positions of the operand are rotated to the left-most
bits of the operand.

Example
Sreg <= Sreg ror 2;

Keyword: SELECT
Select is a concurrent signal assignment statement that selects and assigns a value to a target signal
from among a list of alternatives, based on the value of a given expression.

A select statement includes – in this order – the following:
• the reserved word “with”, followed by the expression to be evaluated, followed by the reserved

word “select”,
• the target signal, followed by the reserved symbol “<=“, followed by:

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 177

(a) the first value which could be assigned to the target signal, followed by the reserved word
“when”, followed by a choice which, if the expression evaluates to be that choice, will cause the first
value to be assigned to the target signal, and

(b) second and subsequent values which could be assigned to the target signal, each followed by
the reserved word “when”, and each followed by a choice which, if the expression evaluates to be
that choice, will cause the value to be assigned to the target signal.

Since the select statement chooses one and only one alternative for execution at a given time, all
possible values for the expression must be covered in “when” statements. An “others” clause may be
used to cover values not explicitly named.

Example
architecture concurrent of mux is

begin

 with Sel select

 Y <= A when "00",

 B when "01",

 C when "10",

 'X' when others;

end concurrent;

Keyword: SEVERITY
The severity keyword is an option that can be defined as part of an assert statement. It allows the user
to choose a severity level if the given condition of the statement is false.

The four possible severity levels are: Note, Warning, Error, and Failure. The value of severity is
typically used to control the actions of a simulation in the event the given condition is false. For
example, a severity level of Failure may be used to stop the simulation.

Example
if (S /= S_expected) then

 err_cnt := err_cnt + 1;
 assert false

 report "Vector failure!" & lf &

 "Expected S to be " & stdvec_to_str(S_expected) & lf &

 "but its value was " & stdvec_to_str(S) & lf
 severity note;

end if;

VHDL Language Reference

178 TR0114 (v1.1) May 20, 2005

Keyword: SHARED
The shared keyword is used as part of a variable declaration to allow the variable to be accessed by
multiple processes.

Example
architecture example of test1 is

shared variable base_time : natural := 0;

...
begin

...
end architecture example;

Notes
Shared variables can only be declared in specific areas of VHDL code, namely:

• as part of an entity declaration

• in the body of an architecture

• in a block statement

• in a generate statement

• in a package declaration.

Keyword: SIGNAL
Signal declares a signal of a specified type.

A signal declaration includes – in this order – the reserved word “signal”, the name of the signal, the
subtype of the signal, an optional indication of the signal's kind (which must be either “register” or
“bus”), and optionally, an expression specifying the initial value of the signal.

Example
architecture behavior of fsm is

 signal current_state: state;

 signal DataBuf: std_logic_vector(15 downto 0);

begin

 ...
end behavior;

Notes
Signals declared within an entity are visible in the corresponding architecture(s).

A signal cannot be declared within a process, procedure or function.

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 179

Keyword: SLA
The sla keyword is the shift left arithmetic operator.

Example
Addr <= Addr sla 8;

Keyword: SLL
The sll keyword is the shift left logical operator.

Example
Addr <= Addr sll 8;

Keyword: SRA
The sra keyword is the shift right arithmetic operator.

Example
Addr <= Addr sra 8;

Keyword: SRL
The srl keyword is the shift right logical operator.

Example
Addr <= Addr srl 8;

Keyword: SUBTYPE
The subtype keyword declares a subtype (a type with a constraint that is based on an existing parent
type).
A subtype declaration includes – in this order – the reserved word “subtype”, the subtype's identifier,
the reserved word “is”, an optional resolution function, the base type of the subtype, and an optional
constraint. If no constraint is included, the subtype is the same as the specified base type.

Example
subtype short is integer range 0 to 255;

...
subtype X01Z is std_ulogic range 'X' to 'Z';

VHDL Language Reference

180 TR0114 (v1.1) May 20, 2005

Keyword: THEN
The then keyword is part of the syntax of an if statement.

Example
if A > B then

 Compare <= GT;
elsif A < B then

 Compare <= LT;
else

 Compare <= EQ;
end if;

Keyword: TO
The to keyword is used to indicate an ascending range in a range statement or other statement which
includes a range (for example, a variable statement). (The reserved word “downto” is used to indicate
a descending range.)

Example
signal A0,A1: std_ulogic_vector(0 to 15);

Keyword: TRANSPORT
The transport keyword is used to specify non-inertial delay in a signal assignment statement.

Example
Waveform <= transport '1' after 10 ns;

Keyword: TYPE
The type keyword declares a type.

There are two kinds of type declarations: a full type declaration and an incomplete type declaration.
A full type declaration includes – in this order – the reserved word “type”, the type identifier, the
reserved word “is”, and the type definition. A type definition can be an access type, a composite type,
a file type, or a scalar type.
An incomplete type declaration includes only the reserved word “type” followed by the type's identifier.
 If an incomplete type declaration exists, a full type declaration with the same identifier must also exist.
 The full type declaration must occur after the incomplete type declaration and within the same
declarations section as the incomplete type declaration.

Example
type StateMachine is (RESET, IDLE, READ, WRITE,

 ERROR);

...

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 181

type RAD16 is range 0 to 15;
...
type test_record is record
 CE: std_ulogic; -- Clock enable
 Set: std_ulogic;
 Din: std_ulogic;
 CRC_Sum: std_ulogic_vector (15 downto 0);
end record;

Notes
The two type declarations define two different types, even if the definitions are the same and they differ
only by their respective identifiers.

Keyword: UNAFFECTED
The unaffected keyword is used to indicate in a conditional or selected signal assignment when the
signal is not to be given a new value.

Example
Mux <= A when Sel = "00" else
 B when Sel = "01" else
 C when Sel = "10" else
 unaffected;

Keyword: UNITS
The units keyword is used in a type declaration to declare physical types.

A units statement includes – in this order – the following:
• the reserved word “units”,

• the base unit,

• optionally, one or more secondary units, and
• the reserved words “end units”.

Example
type time is range -2_147_483_647 to 2_147_483_647
 units
 fs;
 ps = 1000 fs;
 ns = 1000 ps;
 us = 1000 ns;
 ms = 1000 us;
 sec = 1000 ms;
 min = 60 sec;
 hr = 60 min;
 end units;

VHDL Language Reference

182 TR0114 (v1.1) May 20, 2005

Keyword: UNTIL
The until keyword is used as part of a wait statement to temporarily suspend a process until a
specified condition is met.

Example
process

begin

 wait until Clk = '1' and Clk'event;

 M_out <= data_in;
 wait until Clk = '1' and Clk'event;

 M_out <= not data_in;

end process;

Keyword: USE
The use statement identifies items in other design units so those items can be referenced.

A use clause includes – in this order – the reserved word “use”, followed by a list of design units (or
design unit items) to be referenced.

A use clause makes the referenced design units visible to the working environment. If a design unit (or
design unit item) belongs to a library different from the current library, a library statement must be
included before the use statement. The library statement must specify the library holding the
referenced design unit.

Example
use mylib.mypackage.dff;

...
use mylib.mypackage.all;

...
use mylib.all;

...
use work.all;

All design units automatically include the following two implicit clauses:

library STD, WORK;

use STD.STANDARD.all;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 183

Keyword: VARIABLE
The variable keyword declares a variable of a specified type.

A variable declaration includes – in this order – the reserved word “variable”, the variable's name, the
variable's subtype, and, optionally, an expression specifying the initial value of the variable.

Example
process(Rst,Clk)

 variable Q: integer range 0 to 15;

begin

 if Rst = '1' then -- Asynchronous reset

 Q := 0;
 elsif rising_edge(Clk) then

 if Load = '1' then

 Q := to_unsigned(Data); -- Convert vector to

-- integer
 elsif Q = 15 then

 Q := 0;
 else

 Q := Q + 1;
 end if;

 end if;

 Count <= to_vector(4,Q); -- Convert integer to

-- vector
end process;

Notes
A variable can only be declared within a process, procedure or function. Also, a variable cannot be of
a file type.

Variables declared within a process have their values preserved during subsequent executions of the
process.

Variables declared within a function or procedure have their values initialized each time the function or
procedure is called.

VHDL Language Reference

184 TR0114 (v1.1) May 20, 2005

Keyword: WAIT
The wait statement is used to temporarily suspend a process until:

• a specified time has passed (“wait for”, followed by a time expression), or

• a specified condition is met (“wait until”, followed by a Boolean expression), or

• an event occurs which affects one or more signals (“wait on”, followed by a sensitivity list which
specifies signals on each of which an event must occur before processing continues).

Example
CLOCK: process

 variable c: std_ulogic := '0';

 constant PERIOD: time := 50 ns;

begin

 wait for PERIOD / 2;

 c := not c;

 clk <= c;
end process;

Notes
When a wait statement is used within a process, the process must not include a sensitivity list.

Keyword: WHEN
The when keyword is used to specify a condition during which an exit or next statement will be
executed.

Example
L1 : for i in 0 to 9 loop

 L2 : for j in opcodes loop

 for k in 4 downto 2 loop-- loop label is optional

 if k = i next L2; -- go to next L2 loop

 end loop;

 exit L1 when j = crash; -- exit loop L1

 end loop;

end loop;

It is also used to specify a choice (or choices) within a case statement.

Example
case current_state is

 when IDLE =>

 if start_key = '1' then

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 185

 current_state <= READ0;
 end if;

 when READ0 =>

 current_state <= READ1;
 when READ1 =>

 current_state <= READX;
 when READX =>

 current_state <= WRITE0;
 when WRITE0 =>

 current_state <= WRITEX;
 when WRITEX =>

 current_state <= IDLE;
end case;

Keyword: WHILE
The while keyword is used to specify a condition during which a loop will be executed.

Example
process

begin

 while error_flag /= '1' and done /= '1' loop

 Clock <= not Clock;

 wait for CLK_PERIOD/2;

 end loop;

end process;

Keyword: WITH
The with keyword is used in the syntax of a selected signal assignment.

Example
architecture concurrent of mux is

begin

 with Sel select

 Y <= A when "00",

 B when "01",

 C when "10",

 'X' when others;

end concurrent;

VHDL Language Reference

186 TR0114 (v1.1) May 20, 2005

Keyword: XNOR
Xnor is the logical “both or neither” (equality) operator which can be used in an expression.
The expression “A xnor B” returns True only when

• A is true and B is true, or

• A is false and B is false.

Example
architecture example of test is

begin

 Y <= a xnor b;

end example;

Keyword: XOR
Xor is the logical “one or the other but not both” (inequality) operator which can be used in an
expression. The expression “A xor B” returns True only when

• A is true and B is false, or

• A is false and B is true.

Example
entity fulladder is

 port (X: in bit;

 Y: in bit;

 Cin: in bit;

 Cout: out bit;

 Sum: out bit);

end fulladder;

architecture concurrent of fulladder is

begin

 Sum <= X xor Y xor Cin;

 Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end concurrent;

VHDL Language Reference

TR0114 (v1.1) May 20, 2005 187

Revision History

Date Version No. Revision

29-Nov-2004 1.0 New product release

20-May-2005 1.1 Updated for SP4

Software, hardware, documentation and related materials:

Copyright © 2005 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use
only and will not be copied or posted on any network computer or broadcast in any media and (2) no modifications
of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or
imprisonment. Altium, Altium Designer, CAMtastic, Design Explorer, DXP, LiveDesign, NanoBoard, Nexar, nVisage,
P-CAD, Protel, Situs, TASKING and Topological Autorouting and their respective logos are trademarks or registered
trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein
are the property of their respective owners and no trademark rights to the same are claimed.

	VHDL Language Reference
	Entities and Architectures
	Data Types
	Design Units
	Levels of abstraction
	Objects, Data Types and Operators
	Using Signals
	Using Variables
	Using Constants and Literals
	Understanding Types and Subtypes
	Type conversions and type marks
	VHDL Operators
	Understanding VHDL Operators
	Understanding VHDL Attributes

	Using Standard Logic
	IEEE Standard 1164
	Using the standard logic package
	Type conversion and standard logic
	Standard logic data types
	Standard logic operators
	Standard logic type conversions
	Edge detection and other functions
	Standard 1076.3
	Using numeric data types
	Numeric standard operators
	Numeric resize functions
	Numeric type conversion functions
	Numeric matching functions
	Numeric translation functions

	Concurrent Statements
	The concurrent area
	Concurrent signal assignments
	Conditional signal assignment
	Selected signal assignment
	Conditional vs. Selected signal assignment
	Procedure calls
	Generate statements
	Concurrent processes
	Component instantiations
	Port and generic mapping
	Delay specifications
	Signal drivers

	Sequential Statements
	The Process statement
	Sequential statements in subprograms
	Signal and variable assignments
	If-then-else statements
	Case statements
	Loops
	For loop
	While loop
	Infinite loop
	Loop termination

	Modularity Features
	Functions and procedures
	Functions
	Procedures
	Declaring a global subprogram
	Declaring a local subprogram
	Subprogram overloading
	Parameter types
	Mapping of parameters

	Partitioning Features
	Blocks
	Packages
	Design libraries
	Components
	Configurations

	Test Benches
	A simple test bench
	Using assert statements
	Displaying complex strings in assert statements
	Using loops and multiple processes
	Writing test vectors
	Reading and writing files with text I/O

	VHDL Keywords
	Keyword: ABS
	Keyword: ACCESS
	Keyword: AFTER
	Keyword: ALIAS
	Keyword: ALL
	Keyword: AND
	Keyword: ARCHITECTURE
	Keyword: ARRAY
	Keyword: ASSERT
	Keyword: ATTRIBUTE
	Keyword: BEGIN
	Keyword: BLOCK
	Keyword: BODY
	Keyword: BUFFER
	Keyword: BUS
	Keyword: CASE
	Keyword: COMPONENT
	Keyword: CONFIGURATION
	Keyword: CONSTANT
	Keyword: DISCONNECT
	Keyword: DOWNTO
	Keyword: ELSE
	Keyword: ELSIF
	Keyword: END
	Keyword: ENTITY
	Keyword: EXIT
	Keyword: FILE
	Keyword: FOR
	Keyword: FUNCTION
	Keyword: GENERATE
	Keyword: GENERIC
	Keyword: GROUP
	Keyword: GUARDED
	Keyword: IF
	Keyword: IMPURE
	Keyword: IN
	Keyword: INERTIAL
	Keyword: INOUT
	Keyword: IS
	Keyword: LABEL
	Keyword: LIBRARY
	Keyword: LINKAGE
	Keyword: LITERAL
	Keyword: LOOP
	Keyword: MAP
	Keyword: MOD
	Keyword: NAND
	Keyword: NEW
	Keyword: NEXT
	Keyword: NOR
	Keyword: NOT
	Keyword: NULL
	Keyword: OF
	Keyword: ON
	Keyword: OPEN
	Keyword: OR
	Keyword: OTHERS
	Keyword: OUT
	Keyword: PACKAGE
	Keyword: PORT
	Keyword: POSTPONED
	Keyword: PROCEDURE
	Keyword: PROCESS
	Keyword: PURE
	Keyword: RANGE
	Keyword: RECORD
	Keyword: REGISTER
	Keyword: REJECT
	Keyword: REM
	Keyword: REPORT
	Keyword: RETURN
	Keyword: ROL
	Keyword: ROR
	Keyword: SELECT
	Keyword: SEVERITY
	Keyword: SHARED
	Keyword: SIGNAL
	Keyword: SLA
	Keyword: SLL
	Keyword: SRA
	Keyword: SRL
	Keyword: SUBTYPE
	Keyword: THEN
	Keyword: TO
	Keyword: TRANSPORT
	Keyword: TYPE
	Keyword: UNAFFECTED
	Keyword: UNITS
	Keyword: UNTIL
	Keyword: USE
	Keyword: VARIABLE
	Keyword: WAIT
	Keyword: WHEN
	Keyword: WHILE
	Keyword: WITH
	Keyword: XNOR
	Keyword: XOR

	Revision History

