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This comprehensive reference provides a detailed overview 
of the VHDL language and describes each of the standard 
VHDL keywords (reserved words). 

 

 

VHDL is a programming language that has been designed and optimized for describing the behavior of 
digital systems. 

VHDL has many features appropriate for describing the behavior of electronic components ranging 
from simple logic gates to complete microprocessors and custom chips. Features of VHDL allow 
electrical aspects of circuit behavior (such as rise and fall times of signals, delays through gates, and 
functional operation) to be precisely described. The resulting VHDL simulation models can then be 
used as building blocks in larger circuits (using schematics, block diagrams or system-level VHDL 
descriptions) for the purpose of simulation. 

VHDL is also a general-purpose programming language: just as high-level programming languages 
allow complex design concepts to be expressed as computer programs, VHDL allows the behavior of 
complex electronic circuits to be captured into a design system for automatic circuit synthesis or for 
system simulation. Like Pascal, C and C++, VHDL includes features useful for structured design 
techniques, and offers a rich set of control and data representation features. Unlike these other 
programming languages, VHDL provides features allowing concurrent events to be described. This is 
important because the hardware described using VHDL is inherently concurrent in its operation. 

One of the most important applications of VHDL is to capture the performance specification for a 
circuit, in the form of what is commonly referred to as a test bench. Test benches are VHDL 
descriptions of circuit stimuli and corresponding expected outputs that verify the behavior of a circuit 
over time. Test benches should be an integral part of any VHDL project and should be created in 
tandem with other descriptions of the circuit. 

A standard language 
One of the most compelling reasons for you to become experienced with and knowledgeable in VHDL 
is its adoption as a standard in the electronic design community. Using a standard language such as 
VHDL virtually guarantees that you will not have to throw away and recapture design concepts simply 
because the design entry method you have chosen is not supported in a newer generation of design 
tools. Using a standard language also means that you are more likely to be able to take advantage of 
the most up-to-date design tools and that you will have access to a knowledge base of thousands of 
other engineers, many of whom are solving problems similar to your own. 
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Entities and Architectures 
Every VHDL design description consists of at least one entity/architecture pair. (In VHDL jargon, this 
combination of an entity and its corresponding architecture is sometimes referred to as a design 
entity.) In a large design, you will typically write many entity/architecture pairs and connect them 
together to form a complete circuit. 
An entity declaration describes the circuit as it appears from the “outside” - from the perspective of its 
input and output interfaces. If you are familiar with schematics, you might think of the entity declaration 
as being analogous to a block symbol on a schematic. 

The second part of a minimal VHDL design description is the architecture declaration. Before 
simulation or synthesis can proceed, every referenced entity in a VHDL design description must be 
bound with a corresponding architecture. The architecture describes the actual function – or contents – 
of the entity to which it is bound. Using the schematic as a metaphor, you can think of the architecture 
as being roughly analogous to a lower-level schematic referenced by the higher-level functional block 
symbol. 

Entity declaration 
An entity declaration provides the complete interface for a circuit. Using the information provided in an 
entity declaration (the names, data types and direction of each port), you have all the information you 
need to connect that portion of a circuit into other, higher-level circuits, or to develop input stimuli (in 
the form of a test bench) for verification purposes. The actual operation of the circuit, however, is not 
included in the entity declaration. 

Let's take a closer look at the entity declaration for this simple design description: 

entity compare is 

    port( A, B: in bit_vector(0 to 7); 

             EQ: out bit); 

end compare; 

The entity declaration includes a name, compare, and a port statement defining all the inputs and 
outputs of the entity. The port list includes definitions of three ports: A, B, and EQ. Each of these three 
ports is given a direction (either in, out or inout), and a type (in this case either bit_vector(0 to 
7), which specifies an 8-bit array, or bit, which represents a single-bit value). 

There are many different data types available in VHDL. To simplify things in this introductory circuit, 
we're going to stick with the simplest data types in VHDL, which are bit and bit_vector. 

Architecture declaration and body 
The second part of a minimal VHDL source file is the architecture declaration. Every entity declaration 
you reference in your design must be accompanied by at least one corresponding architecture (we'll 
discuss why you might have more than one architecture in a moment). 

Here's the architecture declaration for the comparator circuit: 

architecture compare1 of compare is 
begin 
    EQ <= '1' when (A = B) else '0'; 
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end compare1; 

The architecture declaration begins with a unique name, compare1, followed by the name of the entity 
to which the architecture is bound, in this case compare. Within the architecture declaration (between 
the begin and end keywords) is found the actual functional description of the comparator. There are 
many ways to describe combinational logic functions in VHDL; the method used in this simple design 
description is a type of concurrent statement known as a conditional assignment. This assignment 
specifies that the value of the output (EQ) will be assigned a value of '1' when A and B are equal, and 
a value of '0' when they differ. 

This single concurrent assignment demonstrates the simplest form of a VHDL architecture. As you will 
see, there are many different types of concurrent statements available in VHDL, allowing you to 
describe very complex architectures. Hierarchy and subprogram features of the language allow you to 
include lower-level components, subroutines and functions in your architectures, and a powerful 
statement known as a process allows you to describe complex registered sequential logic as well. 

Data Types 
Like a high-level software programming language, VHDL allows data to be represented in terms of 
high-level data types. A data type is an abstract representation of stored data, such as you might 
encounter in software languages. These data types might represent individual wires in a circuit, or they 
might represent collections of wires. 

The preceding description of the comparator circuit used the data types bit and bit_vector for its inputs 
and outputs. The bit data type has only two possible values: '1' or '0'. (A bit_vector is simply an array of 
bits.) Every data type in VHDL has a defined set of values, and a defined set of valid operations. Type 
checking is strict, so it is not possible, for example, to directly assign the value of an integer data type 
to a bit_vector data type. (There are ways to get around this restriction, using what are called type 
conversion functions. 

The chart below summarizes the fundamental data types available in VHDL. 

Data Type Values Example 

Bit '1', '0' Q <= '1'; 

Bit_vector (array of bits) DataOut <= “00010101”; 

Boolean True, False EQ <= True; 

Integer -2, -1, 0, 1, 2, 3, 4 . . . Count <= Count + 2; 

Real 1.0, -1.0E5 V1 = V2 / 5.3 

Time 1 us, 7 ns, 100 ps Q <= '1' after 6 ns; 

Character 'a', 'b', '2, '$', etc. CharData <= 'X'; 

String (Array of characters) Msg <= “MEM: “ & Addr 



VHDL Language Reference 

4 TR0114 (v1.1) May 20, 2005 

Notes 
The VHDL symbol <= is an assignment operator that assigns the value(s) on its right to the variable on 
its left. 

Design Units 
One concept unique to VHDL (when compared to software programming languages and to its main 
rival, Verilog) is the concept of a design unit. Design units in VHDL (which may also be referred to as 
library units) are segments of VHDL code that can be compiled separately and stored in a library.  
There are actually five types of design units in VHDL; entities, architectures, packages, package 
bodies, and configurations. Entities and architectures are the only two design units that you must 
have in any VHDL design description. Packages and configurations are optional. 

Entities 
A VHDL entity is a statement (indicated by the entity keyword) that defines the external specification of 
a circuit or sub-circuit. The minimum VHDL design description must include at least one entity and one 
corresponding architecture. 

When you write an entity declaration, you must provide a unique name for that entity and a port list 
defining the input and output ports of the circuit. Each port in the port list must be given a name, 
direction (or mode, in VHDL jargon) and a type. Optionally, you may also include a special type of 
parameter list (called a generic list) that allows you to pass additional information into an entity.  

An example of an entity declaration is given below: 

entity fulladder is 
    port (X: in bit; 
              Y: in bit; 
              Cin: in bit; 
              Cout: out bit; 
              Sum: out bit); 
end fulladder; 

Architectures 
A VHDL architecture declaration is a statement (beginning with the architecture keyword) that 
describes the underlying function and/or structure of a circuit. Each architecture in your design must be 
associated (or bound) by name with one entity in the design. 

VHDL allows you to create more than one alternate architecture for each entity. This feature is 
particularly useful for simulation and for project team environments in which the design of the system 
interfaces (expressed as entities) is performed by a different engineer than the lower-level architectural 
description of each component circuit, or when you simply want to experiment with different methods of 
description. 

An architecture declaration consists of zero or more declarations (of items such as intermediate 
signals, components that will be referenced in the architecture, local functions and procedures, and 
constants) followed by a begin statement, a series of concurrent statements, and an end statement, as 
illustrated by the following example: 
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architecture concurrent of fulladder is 
begin 
    Sum <= X xor Y xor Cin; 
    Cout <= (X and Y) or (X and Cin) or (Y and Cin); 
end concurrent; 

Packages and package bodies 
A VHDL package declaration is identified by the package keyword, and is used to collect commonly-
used declarations for use globally among different design units. You can think of a package as a 
common storage area, one used to store such things as type declarations, constants, and global 
subprograms. Items defined within a package can be made visible to any other design unit in the 
complete VHDL design, and they can be compiled into libraries for later re-use. 

A package can consist of two basic parts: a package declaration and an optional package body. 
Package declarations can contain the following types of statements: 

• Type and subtype declarations 

• Constant declarations 

• Global signal declarations 

• Function and procedure declarations 

• Attribute specifications 

• File declarations 

• Component declarations 

• Alias declarations 

• Disconnect specifications 

• Use clauses 

Items appearing within a package declaration can be made visible to other design units through the 
use of a use statement. 

If the package contains declarations of subprograms (functions or procedures) or defines one or more 
deferred constants (constants whose value is not immediately given), then a package body is required 
in addition to the package declaration. A package body (which is specified using the package body 
keyword combination)  must have the same name as its corresponding package declaration, but it can 
be located anywhere in the design, in the same or a different source file. 

The relationship between a package and package body is somewhat akin to the relationship between 
an entity and its corresponding architecture. (There may be only one package body written for each 
package declaration, however.) While the package declaration provides the information needed to use 
the items defined within it (the parameter list for a global procedure, or the name of a defined type or 
subtype), the actual behavior of such things as procedures and functions must be specified within 
package bodies. 

An example of a package is given below: 

package conversion is 

    function to_vector (size: integer; num: integer) return 
std_logic_vector; 
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end conversion; 

package body conversion is 

    function to_vector(size: integer; num: integer) return std_logic_vector 
is 

        variable ret: std_logic_vector (1 to size); 

        variable a: integer; 

    begin 

        a := num; 
        for i in size downto 1 loop 

            if ((a mod 2) = 1) then 

                ret(i) := '1'; 
            else  

                ret(i) := '0'; 
            end if; 

            a := a / 2; 
        end loop; 

        return ret; 

    end to_vector; 

end conversion; 

Configurations 
The final type of design unit available in VHDL is called a configuration declaration. You can think of a 
configuration declaration as being roughly analogous to a parts list for your design. A configuration 
declaration (identified with the configuration keyword)  specifies which architectures are to be bound 
to which entities, and it allows you to change how components are connected in your design 
description at the time of simulation. (Configurations are not generally used for synthesis, and may not 
be supported in the synthesis tool that you will use.) 

Configuration declarations are always optional, no matter how complex a design description you 
create. In the absence of a configuration declaration, the VHDL standard specifies a set of rules that 
provide you with a default configuration. For example, in the case where you have provided more than 
one architecture for an entity, the last architecture compiled will take precedence and will be bound to 
the entity. 

A simple example of a configuration is given below: 

configuration this_build of rcomp is 

    for structure 

        for COMP1: compare use entity work.compare(compare1); 

        for ROT1: rotate use entity work.rotate(rotate1); 

    end for; 

end this_build; 
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Levels of abstraction 
VHDL supports many possible styles of design description. These styles differ primarily in how closely 
they relate to the underlying hardware. When talking about the different styles of VHDL, the differing 
levels of abstraction possible using the language are being considered - behavior, dataflow, and 
structure.  

Suppose the performance specifications for a given project are: “the compressed data coming out of 
the DSP chip needs to be analyzed and stored within 70 nanoseconds of the strobe signal being 
asserted...” This human language specification must be refined into a description that can actually be 
simulated. A test bench written in combination with a sequential description is one such expression of 
the design. These are all points in the behavior level of abstraction. 

After this initial simulation, the design must be further refined until the description is something a VHDL 
synthesis tool can digest. Synthesis is a process of translating an abstract concept into a less-abstract 
form. The highest level of abstraction accepted by today's synthesis tools is the dataflow level.  

The structure level of abstraction comes into play when little chunks of circuitry are to be connected 
together to form bigger circuits. (If the little chunks being connected are actually quite large chunks, 
then the result is commonly called a block diagram.)  Physical information is the most basic level of all 
and is outside the scope of VHDL. This level involves actually specifying the interconnects of 
transistors on a chip, placing and routing macrocells within a gate array or FPGA, etc. 

As an example of these three levels of abstraction, it is possible to describe a complex controller circuit 
in a number of ways. At the lowest level of abstraction (the structural level), you could use VHDL's 
hierarchy features to connect a sequence of predefined logic gates and flip-flips to form the complete 
circuit. To describe this same circuit at a dataflow level of abstraction, you might describe the 
combinational logic portion of the controller (its input decoding and transition logic) using higher-level 
Boolean logic functions and then feed the output of that logic into a set of registers that match the 
registers available in some target technology. At the behavioral level of abstraction, you might ignore 
the target technology (and the requirements of synthesis tools) entirely and instead describe how the 
controller operates over time in response to various types of stimulus. 

Behavior 
The highest level of abstraction supported in VHDL is called the behavioral level of abstraction. When 
creating a behavioral description of a circuit, you will describe your circuit in terms of its operation over 
time. The concept of time is the critical distinction between behavioral descriptions of circuits and 
lower-level descriptions (specifically descriptions created at the dataflow level of abstraction). 

Examples of behavioral forms of representation might include state diagrams, timing diagrams and 
algorithmic descriptions. 

In a behavioral description, the concept of time may be expressed precisely, with actual delays 
between related events (such as the propagation delays within gates and on wires), or it may simply be 
an ordering of operations that are expressed sequentially (such as in a functional description of a flip-
flop). When you are writing VHDL for input to synthesis tools, you may use behavioral statements in 
VHDL to imply that there are registers in your circuit. It is unlikely, however, that your synthesis tool will 
be capable of creating precisely the same behavior in actual circuitry as you have defined in the 
language. (Synthesis tools today ignore detailed timing specifications, leaving the actual timing results 
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at the mercy of the target device technology.) It is also unlikely that your synthesis tool will be capable 
of accepting and processing a very wide range of behavioral description styles. 

If you are familiar with software programming, writing behavior-level VHDL will not seem like anything 
new. Just like a programming language, you will be writing one or more small programs that operate 
sequentially and communicate with one another through their interfaces. The only difference between 
behavior-level VHDL and a software programming language is the underlying execution platform: in the 
case of software, it is some operating system running on a CPU; in the case of VHDL, it is the 
simulator and/or the synthesized hardware. 

Dataflow 
In the dataflow level of abstraction, you describe your circuit in terms of how data moves through the 
system. At the heart of most digital systems today are registers, so in the dataflow level of abstraction 
you describe how information is passed between registers in the circuit. You will probably describe the 
combinational logic portion of your circuit at a relatively high level (and let a synthesis tool figure out the 
detailed implementation in logic gates), but you will likely be quite specific about the placement and 
operation of registers in the complete circuit.  
The dataflow level of abstraction is often called register transfer logic, or RTL. This level of 
abstraction is an intermediate level that allows the drudgery of combinational logic to be simplified 
(and, presumably, taken care of by logic synthesis tools) while the more important parts of the circuit, 
the registers, are more completely specified. 

There are some drawbacks to using a dataflow method of design in VHDL. First, there are no built-in 
registers in VHDL; the language was designed to be general-purpose, and the emphasis was placed 
by VHDL's designers on its behavioral aspects. If you are going to write VHDL at the dataflow level of 
abstraction, you must first create (or obtain) behavioral descriptions of the register elements you will be 
using in your design. These elements must be provided in the form of components (using VHDL's 
hierarchy features) or in the form of subprograms (functions or procedures). 

But for hardware designers, it can be difficult to relate the sequential descriptions and operation of 
behavioral VHDL with the hardware being described (or modeled). For this reason, many VHDL users, 
particularly those who are using VHDL as an input to synthesis, prefer to stick with levels of abstraction 
that are easier to relate to actual hardware devices (such as logic gates and flip-flops). These users are 
often more comfortable using the dataflow level of abstraction. 

Structure 
The third level of abstraction, structure, is used to describe a circuit in terms of its components. 
Structure can be used to create a very low-level description of a circuit (such as a transistor-level 
description) or a very high-level description (such as a block diagram). 

In a gate-level description of a circuit, for example, components such as basic logic gates and flip-flops 
might be connected in some logical structure to create the circuit. This is what is often called a netlist. 
For a higher-level circuit – one in which the components being connected are larger functional blocks – 
structure might simply be used to segment the design description into manageable parts. 

Structure-level VHDL features, such as components and configurations, are very useful for managing 
complexity. The use of components can dramatically improve your ability to re-use elements of your 
designs, and they can make it possible to work using a top-down design approach. 
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To give an example of how a structural description of a circuit relates to higher levels of abstraction, 
consider the design of a simple 5-bit counter. To describe such a counter using traditional design 
methods, you might connect five T flip-flops with some simple decode logic. 

The following VHDL design description represents this design in the form of a netlist of connected 
components: 

entity andgate is 

    port(A,B,C,D: in bit := '1'; Y: out bit); 

end andgate; 

architecture gate of andgate is 

begin 

    Y <= A and B and C and D; 

end gate; 

entity tff is 

    port(Rst,Clk,T: in bit; Q: out bit); 

end tff; 

architecture behavior of tff is 

begin 

    process(Rst,Clk) 

        variable Qtmp: bit; 

    begin 

        if (Rst = '1') then 

            Qtmp := '0'; 
        elsif Clk = '1' and Clk'event then 

            if T = '1' then 

                Qtmp := not Qtmp; 

            end if; 

        end if; 

        Q <= Qtmp; 
    end process; 

end behavior; 

entity TCOUNT is 

    port (Rst,Clk: in bit; 

          Count: out bit_vector(4 downto 0)); 

end TCOUNT; 

architecture STRUCTURE of TCOUNT is 

    component tff 

        port(Rst,Clk,T: in bit; Q: out bit); 
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    end component; 

    component andgate 

        port(A,B,C,D: in bit := '1'; Y: out bit); 

    end component; 

    constant VCC: bit := '1'; 

    signal T,Q: bit_vector(4 downto 0); 

begin 

    T(0) <= VCC; 
    T0: tff port map (Rst=>Rst, Clk=>Clk, T=>T(0), Q=>Q(0)); 

    T(1) <= Q(0); 
    T1: tff port map (Rst=>Rst, Clk=>Clk, T=>T(1), Q=>Q(1)); 

    A1: andgate port map(A=>Q(0), B=>Q(1), Y=>T(2)); 

    T2: tff port map (Rst=>Rst, Clk=>Clk, T=>T(2), Q=>Q(2)); 

    A2: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), Y=>T(3)); 

    T3: tff port map (Rst=>Rst, Clk=>Clk, T=>T(3), Q=>Q(3)); 

    A3: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), D=>Q(3), Y=>T(4)); 

    T4: tff port map (Rst=>Rst, Clk=>Clk, T=>T(4), Q=>Q(4)); 

    Count <= Q; 
end STRUCTURE; 

This structural representation seems a straightforward way to describe a 5-bit counter, and it is 
certainly easy to relate to hardware since just about any imaginable implementation technology will 
have the features necessary to implement the circuit. For larger circuits, however, such descriptions 
quickly become impractical. 

Notes 
In some formal discussions of synthesis, four levels of abstraction are described; behavior, RTL, gate-
level and layout. The three levels of abstraction presented here provide the most useful distinctions for 
today's synthesis user. 
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Objects, Data Types and Operators 
VHDL includes a number of language elements, collectively called objects, that can be used to 
represent and store data in the system being described. The three basic types of objects that you will 
use when entering a design description for synthesis or creating functional tests (in the form of a test 
bench) are signals, variables and constants. Each object that you declare has a specific data type 
(such as bit or integer) and a unique set of possible values. 

The values that an object can take will depend on the definition of the type used for that object. For 
example, an object of type bit has only two possible values, '0' and '1', while an object of type real has 
many possible values (floating point numbers within a precision and range defined by the VHDL 
standard and by the specific simulator you are using). 

When an explicit value is specified (such as when you are assigning a value to a signal or variable, or 
when you are passing a value as a parameter to a subprogram), that value is represented in the form 
of a literal. 

Using Signals 
Signals are objects that are used to connect concurrent elements (such as components, processes and 
concurrent assignments), similar to the way that wires are used to connect components on a circuit 
board or in a schematic. Signals can be declared globally in an external package or locally within an 
architecture, block or other declarative region. 
To declare a signal, you write a signal statement such as the following: 

architecture arch1 of my_design is 

    signal Q: std_logic; 

begin 

    . . . 
end arch1; 

In this simple example, the signal Q is declared within the declaration section of the arch1 
architecture. At a minimum, a signal declaration must include the name of the signal (in this case Q) 
and its type (in this case the standard type std_logic). If more than one signal of the same type is 
required, multiple signal names can be specified in a single declaration: 

architecture arch2 of my_design is 

    signal Bus1, Bus2: std_logic_vector(7 downto 0); 

begin 

    . . . 
end declare; 

In the first example above, the declaration of Q was entered in the declaration area of architecture 
arch1. Thus, the signal Q will be visible anywhere within the arch1 design unit, but it will not be visible 
within other design units. To make the signal Q visible to the entire design (a global signal), you would 
have to move the declaration into an external package, as shown below: 
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package my_package is 

    signal Q: std_logic;     -- Global signal 

end my_package; 

. . . 
use work.my_package.Q;   -- Make Q visible to the architecture 

architecture arch1 of my_design is 

begin 

    . . . 
end arch1; 

In this example, the declaration for Q has been moved to an external package, and a use statement 
has been specified, making the contents of that package visible to the subsequent architecture. 

Signal initialization 
In addition to creating one or more signals and assigning them a type, the signal declaration can also 
be used to assign an initial value to the signal, as shown below: 

signal BusA: std_logic_vector(15 downto 0) := (others => 'Z'); 

This particular initialization uses a special kind of assignment, called an aggregate assignment, to 
assign all signals of the array BusA to an initial value of 'Z'. (The 'Z' value is defined in the IEEE 
1164 standard as a high-impedance state.) 

Initialization values are useful for simulation modeling, but they are not recommended for design 
descriptions that will be processed by synthesis tools. Synthesis tools typically ignore initialization 
values because they cannot assume that the target hardware will power up in a known state. 

Using signals 
You will use signals in VHDL in two primary ways. First, if you want signals to carry information 
between different functional parts of your design, such as between two components, you will probably 
use them in a way similar to the following: 

library ieee; 

use ieee.std_logic_1164.all; 

entity shiftcomp is port(Clk, Rst, Load: in std_logic; 

                                   Init: in std_logic_vector(0 to 7); 

                                   Test: in std_logic_vector(0 to 7); 

                                   Limit: out std_logic); 

end shiftcomp; 

architecture structure of shiftcomp is 

    component compare 

        port(A, B: in std_logic_vector(0 to 7); EQ: out bit); 

    end component; 
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    component shift 

        port(Clk, Rst, Load: in std_logic; 

               Data: in std_logic_vector(0 to 7); 

               Q: out std_logic_vector(0 to 7)); 

    end component; 

    signal Q: std_logic_vector(0 to 7); 

begin 

    COMP1: compare port map (Q, Test, Limit); 

    SHIFT1: shift port map (Clk, Rst, Load, Init, Q); 

end structure; 

This example declares the signal Q within the architecture, then uses Q to connect the two components 
COMP1 and SHIFT1 together. 

A second way of using signals is demonstrated by the following example in which signals are used 
within logic expressions and are assigned values directly (in this case within a process): 

library ieee; 

use ieee.std_logic_1164.all; 

entity synch is 

    port (Rst, Clk, Grant, nSelect: in std_logic; 

             Request: out std_logic); 

end synch; 

architecture dataflow of synch is 

    signal Q1, Q2, Q3, D3: std_logic; 

begin 

    dff: process (Rst, Clk) 

    begin 

        if Rst = '1' then 

            Q1 <= '0'; 

            Q2 <= '0'; 

            Q3 <= '0'; 
        elsif Clk = '1' and Clk'event then 

            Q1 <= Grant; 
            Q2 <= Select; 
            Q3 <= D3; 
        end if; 
    end process; 
    D3 <= Q1 and Q3 or Q2; 
    Request <= Q3; 
end dataflow; 
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This example (which is a simplified synchronizer circuit) uses three signals, Q1, Q2 and Q3, to 
represent register elements, with the signal D3 being used as an intermediate signal representing a 
combinational logic function connecting the outputs of registers Q1, Q2 and Q3 to the input of Q3. The 
final assignment assigns the Q3 register output to the Request output port. The register behavior is 
encapsulated into a process, dff, simplifying the concurrent statements that follow. 

It is important to note that there is no significance to the order in which these concurrent statements 
occur. Like wires drawn between symbols on a schematic, signals assigned and used within a VHDL 
architecture are independent of each other and are not position dependent. 

Using Variables 
Variables are objects used to store intermediate values between sequential VHDL statements. 
Variables are only allowed in processes, procedures and functions, and they are always local to those 
functions. 

Variables in VHDL are much like variables in a conventional software programming language. They 
immediately take on and store the value assigned to them, and they can be used to simplify a complex 
calculation or sequence of logical operations. 

The following example is a simplified synchronizer circuit: 

library ieee; 

use ieee.std_logic_1164.all; 

entity synch is 

    port (Rst, Clk, Grant, nSelect: std_ulogic; 

             Request: std_ulogic); 
end synch; 

architecture behavior of synch is 

begin 

    process(Rst, Clk) 

        variable Q1, Q2, Q3: std_ulogic; 

    begin 

        if Rst = '1' then   -- Async reset 

            Q1 := '0'; Q2 := '0'; Q3 := '0'; 
        elsif (Clk = '1' and Clk'event) then 

            Q1 := Grant; 

            Q2 := Select; 
            Q3 := Q1 and Q3 or Q2; 

        end if; 

        Request <= Q3; 
    end process; 

end behavior; 
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In this example, a single process is used to describe the behavior of the three commonly-clocked 
register elements. The connections between the three registers are represented by variables that are 
local to the process, and the result (the output of register Q3) is then assigned to the output port 
Request. This design will probably not work as intended, because the registered behavior of Q1 and 
Q2 will be “short circuited” by the fact that variables were used. 

Because variables do not always result in registers being generated within otherwise clocked 
processes, you must be very careful when using them. 

Notes 
The 1076-1993 language standard adds a new type of global variable that has visibility between 
different processes and subprograms. Global variables are not generally supported in synthesis tools. 

Using Constants and Literals 
Constants 
Constants are objects that are assigned a value once, when declared, and do not change their value 
during simulation. Constants are useful for creating more readable design descriptions and they make 
it easier to change the design at a later time. The following code fragment provides a few examples of 
constant declarations: 

architecture sample1 of consts is 

    constant SRAM: bit_vector(15 downto 0) := X"F0F0"; 

    constant PORT: string  := "This is a string"; 

    constant error_flag: boolean := True; 

begin 

    . . . 
    process( . . .) 

        constant CountLimit: integer := 205; 

    begin 

        . . . 
    end process; 

end sample1; 

Constant declarations can be located in any declaration area in your design description. If you want to 
create constants that are global to your design description, then you will place the constant 
declarations into external packages. If a constant will be used only within one segment of your design, 
you can place the constant declaration within the architecture, block, process or subprogram that 
requires it. 

Literals 
Explicit data values that are assigned to objects or used within expressions are called literals. Literals 
represent specific values, but they do not always have an explicit type. (For example, the literal '1' 
could represent either a bit data type or a character.) Literals do, however, fall into a few general 
categories: 
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Character literals 

Character literals are 1-character ASCII values that are enclosed in single-quotes, such as the values 
'1', 'Z', '$' and ':'. The data type of the object being assigned one of these values (or the type implied by 
the expression in which the value is being used) will dictate whether a given character literal is valid. 
The literal value '$', for example, is a valid literal when assigned to a character type object, but it is not 
valid when assigned to a std_logic or bit data type. 

String literals 

String literals are collections of one or more ASCII characters enclosed in double-quote characters. 
String literals may contain any combination of ASCII characters, and they may be assigned to 
appropriately sized arrays of single-character data types (such as bit_vector or std_logic_vector) or to 
objects of the built-in type string. 

Bit string literals 

Bit string literals are special forms of string literals that are used to represent binary, octal, or 
hexadecimal numeric data values. 
When representing a binary number, a bit string literal must be preceded by the special character 'B', 
and it may contain only the characters '0' and '1'. For example, to represent a decimal value of 36 using 
a binary format bit string literal, you would write B"100100". 

When representing an octal number, the bit string literal must include only the characters '0' through '7', 
and it must be preceded by the special character 'O', as in O"446". 

When representing a hexadecimal value, the bit string literal must be preceded by the special character 
'X', and it may include only the characters '0' through '9' and the characters 'A' through 'F', as in 
X"B295". (Lower-case characters are also allowed, so 'a' through 'f' are also valid.) 

The underscore character '_' may also be used in bit string literals as needed to improve readability. 
The following are some examples of bit string literals representing a variety of numeric values: 
B"0111_1101" (decimal value 125) 

O"654" (decimal value 428) 

O"146_231" (decimal value 52,377) 

X"C300" (decimal value 49,920) 

Numeric literals 

There are two basic forms of numeric literals in VHDL, integer literals and real literals. 

Integer literals are entered as you would expect, as decimal numbers preceded by an optional negation 
character ('-'). The range of integers supported is dependent on your particular simulator or synthesis 
tool, but the VHDL standard does specify a minimum range of -2,147,483,647 to +2,147,483,647 (32 
bits of precision, including the sign bit). 

Real literals are entered using an extended form that requires a decimal point. For large numbers, 
scientific notation is also allowed using the character 'E', where the number to the left of the 'E' 
represents the mantissa of the real number, while the number to the right of the 'E' represents the 
exponent. The following are some examples of real literals: 
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5.0 

-12.9 

1.6E10 

1.2E-20 

The minimum and maximum values of real numbers are defined by the simulation tool vendor, but they 
must be at least in the range of -1.0E38 to +1.0E38 (as defined by the standard). Numeric literals may 
not include commas, but they may include underscore characters (“_”) to improve readability, as in:  

1_276_801  -- integer value 1,276,801 

Type checking is strict in VHDL, and this includes the use of numeric literals. It is not possible, for 
example, to assign an integer literal of 9 to an object of type real. (You must instead enter the value as 
9.0.) 

Based literals 

Based literals are another form of integer or real values, but they are written in non-decimal form. To 
specify a based literal, you precede the literal with a base specification (such as 2, 8, or 16) and 
enclose the non-decimal value with a pair of '#' characters as shown in the examples below: 

2#10010001# (integer value 145) 

16#FFCC# (integer value 65,484) 

8#101# (integer value 65) 

Physical literals 

Physical literals are special types of literals used to represent physical quantities such as time, voltage, 
current, distance, etc. Physical literals include both a numeric part (expressed as an integer) and a unit 
specification. The following examples show how physical literals can be expressed: 

300 ns   (300 nanoseconds) 

900 ps   (900 picoseconds) 

40 ma   (40 milliamps) 

Notes 
In VHDL standard 1076-1987, bit string literals are only valid for the built-in type bit_vector. In 1076-
193, bit string literals can be applied to any string type, including std_logic_vector. 

Understanding Types and Subtypes 
The VHDL 1076 specification describes four classes of data types: 
• Scalar types represent a single numeric value or, in the case of enumerated types, an enumeration 

value. The standard types that fall into this class are integer, real (floating point), physical, and 
enumerated types. All of these basic types can be thought of as numeric values. 

• Composite types represent a collection of values. There are two classes of composite types: 
arrays containing elements of the same type, and records containing elements of different types. 
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• Access types provide references to objects in much the same way that pointer types are used to 
reference data in software programming languages. 

• File types reference objects (typically disk files) that contain a sequence of values. 

Each type in VHDL has a defined set of values. For example, the value of an integer data type has a 
defined range of at least -2147483647 to +2147483647. In most cases you will only be interested in a 
subset of the possible values for a type, so VHDL provides the ability to specify a constraint whenever 
an object of a given type is declared. The following declaration creates an object of type integer that is 
constrained to the positive values of 0 to 255: 

signal ShortInt: integer range 0 to 255; 

VHDL also provides a feature called a subtype, allowing you to declare an alternate data type that is a 
constrained version of an existing type. For example, the declaration 

subtype SHORT integer range 0 to 255; 

creates an alternate scalar type with a constrained range. Because SHORT is a subtype of integer, it 
carries with it all operations available for the integer base type. 

The four classes of data types are discussed in more detail below. 

Scalar types 
Scalar types are those types that represent a single value, and are ordered in some way so that 
relational operations (such as greater than, less than, etc.) can be applied to them. These types include 
the obvious numeric types (integer and real) as well as less obvious enumerated types such as 
Boolean and Character. 

Bit type 

The bit data type is the most fundamental representation of a wire in VHDL. The bit type has only two 
possible values, '0' and '1', that can be used to represent logical 0 and 1 values (respectively) in a 
digital system. The following example uses bit data types to describe the operation of a full adder: 

entity fulladder is 

    port (X: in bit; 

          Y: in bit; 

          Cin: in bit; 

          Cout: out bit; 

          Sum: out bit); 

end fulladder; 

architecture concurrent of fulladder is 

begin 

    Sum <= X xor Y xor Cin; 

    Cout <= (X and Y) or (X and Cin) or (Y and Cin); 

end concurrent; 
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The bit data type supports the following operations: and, or, nand, nor, xor, xnor, not, =, /=, <, <=, >, 
and >=. 

Boolean type 

The Boolean type has two possible values, True and False.  Like the bit data type, the Boolean type is 
defined as an enumerated type. The Boolean type does not have any implied width; it is simply the 
result of a logical test (such as a comparison operation or an if statement) or the expression of some 
logical state (such as in the assignment, ErrorFlag <= True;). 

Integer type 

An integer type includes integer values in a specified range. The only predefined integer type is integer. 
Integer types have a minimum default range of -2147483647 to +2147483647, inclusive. However, you 
can restrict that value with a range constraint and/or declare a new integer subtype with a range 
constrained range, as in the following example: 

subtype byteint integer range 0 to 255; 

The predefined subtype natural restricts integers to the range of 0 to the specified (or default) upper 
range limit.  The predefined subtype positive restricts integers to the range of 1 to the specified (or 
default) upper range limit. 

An alternative to the integer data type is provided with IEEE Standard 1076.3. This standard defines 
the standard data types signed and unsigned, which are array types (based on the IEEE 1164 9-valued 
data types) that have properties of both array (composite) and numeric (scalar) data types. Like an 
array, you can perform shifting and masking operations on them and, like integers, you can perform 
arithmetic operations on them. 

Real (floating point) type 

Floating point types are used to approximate real number values. The predefined floating point type 
provided in VHDL is called real. It has possible values in the range of at least -1.0E38 to +1.0E38. 

The following declaration describes a signal of type real that has been initialized to a real value of 
4589.3: 

signal F0: real := 4589.3; 

The real data type supports the following operations: =, /=, <, <=, >, >=, +, -, abs, +, -, *, and /. 

Character type 

VHDL's character data type is similar to the character types you might be familiar with from software 
languages. Characters can be used to represent string data (such as you might use in a test bench), to 
display messages during simulation, or to represent actual data values in your design description. 
Unlike many software languages, character values in VHDL have no explicit value. This means that 
they cannot be simply mapped onto numeric data types or assigned directly to arrays of bits. 

There is no specific numeric value associated with a given character literal in VHDL. (You cannot, for 
example, assign a character literal to an 8-bit array without providing a type conversion function that 
assigns unique array values – such as ASCII values – to the target array for each character value.) 

The character data type is an enumerated type. However, there is an implied ordering (refer to the 
IEEE 1076-1993 specification for details). 
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Severity_level type 

Severity_level is a special data type used in the report section of an assert statement. There are four 
possible values for an object of type severity_level: note, warning, error and failure. You might use 
these severity levels in your test bench, for example, to instruct your simulator to stop processing when 
an error (such as a test vector failure) is encountered during a simulation run. The following assert 
statement makes use of the FAILURE severity level to indicate that the simulator should halt 
processing if the specified condition evaluates false: 

assert (error_flag = '1') 

    report "There was an error; simulation has halted." 

    severity FAILURE; 

Time and other Physical types 

Time is a standard data type that falls into the category of physical types in VHDL. Physical types are 
those types that are used for measurement. They are distinguished by the fact that they have units of 
measurement, such as (in the case of time) seconds, nanoseconds, etc.  Each unit in the physical type 
(with the exception of the base unit) is based on some multiple of the preceding unit. The definition for 
type time, for example, might have been written as follows (the actual definition is implementation-
dependent): 

type time isrange -2147483647 to 2147483647 

       units 

              fs; 

              ps  = 1000 fs; 

              ns  = 1000 ps; 

              us  = 1000 ns; 

              ms  = 1000 us; 

              sec = 1000 ms; 

              min = 60 sec; 

              hr  = 60 min; 
       end units; 

Enumerated types 

Enumerated types are used to describe (internally) many of the standard VHDL data types. You can 
also use enumerated types to describe your own unique data types. For example, if you are describing 
a state machine, you might want to make use of an enumerated type to represent the various states of 
the machine, as in the following example: 

architecture FSM of VCONTROL is 

    type states is (StateLive,StateWait,StateSample,StateDisplay); 

    signal current_state, next_state: states; 

begin 

   . . . 
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    -- State transitions: 
    STTRANS: process(current_state,Mode,VS,ENDFR) 

    begin 

        case current_state is 

            when StateLive =>    -- Display live video on the output 

             . . .  
           when StateWait =>    -- Wait for vertical sync 

             . . .  
            when StateSample =>  -- Sample one frame of video 

            . . .  
           when StateDisplay => -- Display the stored frame 

             . . .  
       end case; 

    end process; 

end FSM; 

In this example (the control logic for a video frame grabber), an enumerated type (states) is defined 
in the architecture, and two signals (current_state and next_state) are declared for use in the 
subsequent state machine description. Using enumerated types in this way has two primary 
advantages: first, it is very easy to debug a design that uses enumerated types, because you can 
observe the symbolic type names during simulation; second, and perhaps more importantly for this 
state machine description, you can defer the actual encoding of the symbolic values until the time that 
you implement the design in hardware. 

Synthesis tools generally recognize the use of enumerated types in this way and can perform special 
optimizations, assigning actual binary values to each symbolic name during synthesis. Synthesis tools 
generally also allow you to override the encoding of enumerated data types, so you have control over 
the encoding process. 

Composite types 

Data Type Values Comment 

bit_vector "00100101", "10", etc. Array of bits 

string "Simulation failed!", etc. Array of characters 

records Any collection of values User defined composite data type 

Composite types are collections of one or more types of values. An array is a composite data type that 
contains items of the same type, either in a single dimension (such as a list of numbers or characters) 
or in multiple dimensions (such as a table of values). Records, on the other hand, define collections of 
possibly unrelated data types. Records are useful when you need to represent complex data values 
that require multiple fields. 
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Array types 

An array is a collection of one or more values or objects of the same type. Arrays are indexed by a 
number that falls into the declared range of the array. 

The following is an example of an array type declaration: 

        type MyArray isarray (15 downto 0) of std_ulogic; 

This array type declaration specifies that the new type MyArray contains 16 elements, numbered 
downward from 15 to 0. Arrays can be given ranges that decrement from left to right (as shown) or 
increment (using the to keyword instead of downto). Index ranges do not have to begin or end at 
zero. 
The index range (in this case 15 downto 0) is what is known as the index constraint. It specifies the 
legal bounds of the array. Any attempt to assign values to, or read values from, an element outside the 
range of the array will result in an error during analysis or execution of the VHDL design description. 

The index constraint for an array can specify an unbounded array using the following array range 
syntax: 

    type UnboundedArray is array (natural range <>) of std_ulogic; 

This array type declaration specifies that the array UnboundedArray will have a index constraint 
matching the range of integer subtype natural, which is defined as 0 to the highest possible integer 
value (at least 2,147,483,647).  

An array type is uniquely identified by the types (and constraints) of its elements, the number of 
elements (its range), and the direction and order of its indices. 

Arrays can have multiple indices, as in the following example: 

type multi isarray(7 downto 0, 255 downto 0) of bit; 

The following example (a parity generator) demonstrates how array elements can be accessed, in this 
case within a loop: 

entity parity10 is 

    port(D: in array(0 to 9) of bit; 

         ODD: out bit); 

    constant WIDTH: integer := 10; 

end parity10; 

architecture behavior of parity10 is 

begin 

    process(D) 

        variable otmp: Boolean; 

    begin 

        otmp := false; 
        for i in 0 to D'length - 1 loop 

            if D(i) = '1' then 
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                otmp := not otmp; 

            end if; 

        end loop; 

        if otmp then 

            ODD <= '1'; 
        else 

            ODD <= '0'; 
        end if; 

    end process; 

end behavior; 

The direction of an array range has an impact on the index values for each element. For example, the 
following declarations: 

signal A: bit_vector(0 to 3); 

signal B: bit_vector(3 downto 0); 

create two objects, A and B, that have the same width but different directions. The aggregate 
assignments: 

A <= ('1','0','1','0'); 

B <= ('0','1','0','1'); 

are exactly identical to the assignments: 

A(0) <= '1'; 

A(1) <= '0'; 

A(2) <= '1'; 

A(3) <= '0'; 

B(3) <= '0'; 

B(2) <= '1'; 

B(1) <= '0'; 

B(0) <= '1'; 

In this case, the arrays have the same contents when viewed in terms of their array indices. Assigning 
the value of B to A, as in: 

A <= B; 

which would be exactly equivalent to the assignments: 

A(0) <= B(3); 

A(1) <= B(2); 

A(2) <= B(1); 

A(3) <= B(0); 
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The leftmost element of array A has an index of 0, while the leftmost value of array B has an index 
value of 1. 

Record types 

A record is a composite type that has a value corresponding to the composite value of its elements. 
The elements of a record may be of unrelated types. They may even be other composite types, 
including other records. You can access data in a record either by referring to the entire record (as 
when copying the contents of one record object to another record object), or individually by referring to 
a field name. The following example demonstrates how you might declare a record data type consisting 
of four elements: 

type data_in_type is 

    record 

        ClkEnable: std_logic; 
        Din: std_logic_vector(15 downto 0); 

        Addr: integer range 0 to 255; 

        CS: std_logic; 
    end record; 

The four names, ClkEnable, Din, Addr and CS are all field names of the record, representing data of 
specific types that can be stored as a part of the record. For example, an object of type 
data_in_type could be created and initialized with the following signal declaration: 

signal test_record: data_in_type := ('0', "1001011011110011", 165, '1'); 

This initialization would be identical to the assignments: 

test_record.ClkEnable <= '0'; 

test_record.Din <= "1001011011110011"; 

test_record.Addr <= 165; 

test_record.CS <= '1'; 

Access and incomplete types 
Access types and incomplete types are used to create data indirection in VHDL. You can think of 
access types as being analogous to pointers in software programming languages such as C or Pascal. 
Incomplete types are required to create recursive types such as linked lists, trees and stacks. Access 
and incomplete types can be useful for creating dynamic representations of data (such as stacks), but 
they are not supported in today's synthesis tools. Refer to the IEEE VHDL Language Reference 
Manual for more information about these language features. 

File types 
File types are very useful for writing test benches. File types differ in the VHDL 1076-1987 and 1076-
1993 specifications. Discussions and examples of each are presented below. 
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VHDL 1076-1987 file types 

A file type is a special type of variable that contains sequential data. In the 1987 VHDL standard 
language, files are implicitly opened when they are declared, and it is not possible to explicitly close 
them. Objects of type file can be read from and written to using functions and procedures (read, write, 
and endfile) that are provided in the standard library. Additional functions and procedures for 
formatting of data read from files is provided in the Text I/O library, which is also part of the 1076 
standard. The built-in functions available for reading and writing files in VHDL (the 1987 specification) 
are: 
• Read(f, object) – Given a declared file and an object, read one field of data from the file into that 

object. When the read procedure is invoked, data is read from the file and the file is advanced to 
the start of the next data field in the file. 

• Write(f, object) – Given a declared file and an object, write the data contained in the object to the 
file. 

• Endfile(f) – Given a declared file, return a boolean true value if the current file marker is at the end 
of the file. 

Files in VHDL are sequential; there is no provision for opening a file and reading from a random 
location in that file, or for writing specific locations in a file. 

To use an object of type file, you must first declare the type of its contents, as shown below: 

type file_of_characters isfile of character; 

This declaration creates a new type, called file_of_characters, that consists of a sequence of 
character values. To use this file type, you would then create an object of type 
file_of_characters, as shown below: 

file testfile: file_of_characters is in "TESTFILE.ASC"; 

This statement creates the object testfile and opens the indicated disk file. You can now use the 
built-in read procedure to access data in the file. A complete architecture that loops through a file and 
reads each character is shown below: 

architecture sample87 of readfile is 

begin 

    Read_input: process   

        type character_file is file of character; 

        file cfile: character_file is in "TESTFILE.ASC"; 

        variable C: character; 

        variable char_cnt: integer := 0; 

    begin 

        while not endfile(cfile) loop 

            read (cfile, C) ; -- Get a character from cfile into C 

            char_cnt = char_cnt + 1; -- Keep track of the number of  

-- characters 
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        end loop; 

    end process; 

end sample87; 

VHDL 1076-1993 file types 

In VHDL '93, file types and associated functions and procedures were modified to allow files to be 
opened and closed as needed. In the 1987 specification, there is no provision for closing a file, and 
problems can arise when it is necessary for two parts of the same design description to open the same 
file at different points, or when existing files must be both read from and written to (as when appending 
data). The built-in functions available for file operations in VHDL '93 are: 
• File_open(f, fname, fmode) – Given a declared file object, file name (a string value) and a mode 

(either READ-MODE, WRITE_MODE, or APPEND_MODE), open the indicated file. 
• File_open(status, f, fname, fmode) – Same as above, but return the status of the file open 

request in the first parameter, which is of type file_open_status. The status returned is either 
OPEN_OK (meaning the file was successfully opened), STATUS_ERROR (meaning the file was 
not opened because there was already an open file associated with the file object), NAME_ERROR 
(meaning there was a system error related to the file name specified) or MODE_ERROR (meaning 
that the specified mode is not valid for the specified file). 

• File_close(f) – Close the specified file. 

• Read(f, object) – Given a declared file and an object, read one field of data from the file into that 
object. When the read procedure is invoked, data is read from the file and the file is advanced to 
the start of the next data field in the file. 

• Write(f, object) – Given a declared file and an object, write the data contained in the object to the 
file. 

• Endfile(f) – Given a declared file, return a boolean true value if the current file marker is at the end 
of the file. 

A complete architecture that opens a file and loops through it, reading each character in the file, is 
shown below: 

architecture sample93 of readfile is 

begin 

    Read_input: process   

        type character_file is file of character; 

        file cfile: character_file; 

        variable C: character; 

        variable char_cnt: integer := 0; 

    begin 

        file_open(cfile, "TESTFILE.ASC", READ_MODE); 
        while not endfile(cfile) loop 

            read (cfile, C) ; -- Get a character from cfile into C 

            char_cnt = char_cnt + 1; -- Keep track of the number of  
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-- characters 
        end loop; 

        file_close(cfile); 
    end process; 

end sample93; 

Notes 
The IEEE 1164 specification describes an alternative to bit called std_ulogic. Std_ulogic has nine 
possible values, allowing the values and states of wires (such as high-impedance, unknown, etc.) to be 
more accurately described. 

 

Floating point types have little use in synthesizable designs, as no synthesis tool available today will 
accept them. 

 

Multidimensional arrays are not generally supported in synthesis tools. They can, however, be useful 
for describing test stimulus, memory elements, or other data that require a tabular form. 

 

Records types are not generally synthesizable; however, they can be very useful when describing test 
stimulus. 

Type conversions and type marks 
VHDL is a strongly typed language, meaning that you cannot simply assign a literal value or object of 
one type to an object of another type. To allow the transfer of data between objects of different types, 
VHDL includes type conversion features for types that are closely related. VHDL also allows type 
conversion functions to be written for types that are not closely related. In addition, VHDL includes type 
mark features to help specify (or qualify) the type of a literal value when the context or format of the 
literal makes its type ambiguous. 

Explicit type conversions 
The simplest type conversions are explicit type conversions, which are only allowed between closely 
related types. Two types are said to be closely related when they are either abstract numeric types 
(integers or floating points), or if they are array types of the same dimensions and share the same 
types (or the element types themselves are closely related) for all elements in the array. In the case of 
two arrays, it is not necessary for the arrays to have the same direction. If two subtypes share the 
same base type, then no explicit type conversion is required. 

The following example demonstrates implicit and explicit type conversions: 

architecture example of typeconv is 

    type array1 is array(0 to 7) of std_logic; 

    type array2 is array(7 downto 0) of std_logic; 

    subtype array3 is std_logic_vector(0 to 7); 
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    subtype array4 is std_logic_vector(7 downto 0); 

    signal a1: array1; 

    signal a2: array2; 

    signal a3: array3; 

    signal a4: array4; 

begin 

    a2 <= array2(a1);   -- explicit type conversion 

    a4 <= a3;           -- no explicit type conversion needed 
end example; 

Type conversion functions 
To convert data from one type to an unrelated type (such as from an integer type to an array type), you 
must make use of a type conversion function. Type conversion functions may be obtained from 
standard libraries (such as the IEEE 1164 library), from vendor-specific libraries (such as those 
supplied by synthesis tool vendors), or you can write you own type conversion functions. 

A type conversion function is a function that accepts one argument of a specified type and returns the 
equivalent value in another type.  

The following two functions are examples of type conversion functions that convert between integer 
and array (std_ulogic_vector) data types: 

------------------------------------------------------------------------- 

-- Convert a std_ulogic_vector to an unsigned integer 

-- 
function to_uint (a: std_ulogic_vector) return integer is 

    alias av: std_ulogic_vector (1 to a'length) is a; 

    variable val: integer := 0; 

    variable b: integer := 1; 

begin 

    for i in a'length downto 1 loop 

        if (av(i) = '1') then    -- if LSB is '1', 

            val := val + b;       -- add value for current bit position 
        end if; 

        b := b * 2;    -- Shift left 1 bit 
    end loop; 

    return val; 

end to_uint; 

-------------------------------------------------------- 

-- Convert an integer to a std_ulogic_vector 

-- 
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function to_vector (size: integer; val: integer) return std_ulogic_vector is 

    variable vec: std_ulogic_vector (1 to size); 

    variable a: integer; 

begin 

    a := val; 
    for i in size downto 1 loop 

        if ((a mod 2) = 1) then 

            vec(i) := '1'; 
        else  

            vec(i) := '0'; 
        end if; 

        a := a / 2; 
    end loop; 

    return vec; 

end to_vector; 

The following example (a loadable counter) demonstrates how these two functions could be used: 

library ieee; 

use ieee.std_logic_1164.all; 

library types;       -- Type conversions have been compiled into library 
'types' 
use types.conversions.all; 

entity count16 is 

    port (Clk,Rst,Load: in std_ulogic; 

          Data: in std_ulogic_vector(3 downto 0); 

          Count: out std_ulogic_vector(3 downto 0)); 

end count16; 

architecture count16a of count16 is 

begin 

    process(Rst,Clk) 

        variable Q: integer range 0 to 15; 

    begin 

        if Rst = '1' then                -- Asynchronous reset 

            Q := 0; 
        elsif rising_edge(Clk) then 

            if Load = '1' then 

                Q := to_uint(Data);      -- Convert vector to integer 
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            elsif Q = 15 then 

                Q := 0; 
            else 

                Q := Q + 1; 
            end if; 

        end if; 

        Count <= to_vector(4,Q);         -- Convert integer to vector 

                                         -- for use outside the process. 
    end process; 

end count16a; 

In this example, the interface specified in the entity port list uses standard logic data types, including a 
std_ulogic_vector array data type for the counter output. Because there are no arithmetic operations 
defined for the std_ulogic_vector data type, it is necessary to introduce an intermediate integer variable 
and convert the Data input from a std_ulogic_vector type to an integer when assigning it to the 
intermediate variable, and to convert the intermediate variable back to a std_ulogic_vector array type 
when assigning it to the Count output. 

Another common application of type conversion functions is the conversion of string data read from a 
file to array or record data types suitable for use as stimulus in a test bench. The following function 
accepts data in the form of a fixed-length string and converts it, character by character, into a record 
data type: 

type test_record is record 

    CE: std_ulogic;   -- Clock enable 

    Set: std_ulogic;  -- Preset 

    Din: std_ulogic;  -- Binary data input 
    Doutput: std_ulogic_vector (15 downto 0);  -- Expected output 

end record; 

function str_to_record(s: string(18 downto 0)) return test_record is 

    variable temp: test_record; 

begin  

    case s(18) is 

        when '1' => temp.CE := '1'; 

        when '0' => temp.CE := '0'; 

        when others => temp.CE = 'X'; 

    end case; 

    case s(17) is 

        when '1' => temp.Set := '1'; 

        when '0' => temp.Set := '0'; 
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        when others => temp.Set = 'X'; 

    end case; 

    case s(16) is 

        when '1' => temp.Din := '1'; 

        when '0' => temp.Din := '0'; 

        when others => temp.Din = 'X'; 

    end case; 

    for i in 15 downto 0 loop 

        case s(i) is 

            when '1' => temp.Doutput := '1'; 

            when '0' => temp.Doutput := '0'; 

            when others => temp.Doutput = 'X'; 

        end case; 

    end loop; 

    return temp; 

end str_to_record; 

There are many applications of type conversion functions, and many possible ways to write them. If 
you are writing a synthesizable design description, you should (whenever possible) make use of type 
conversions that have been provided to you by your synthesis vendor, as type conversion functions 
can be difficult (in some cases impossible) for synthesis tools to handle. 

Ambiguous literal types 
Functions and procedures in VHDL are uniquely identified not only by their names, but also by the 
types of their arguments. This means that you can, for example, write two functions to perform similar 
tasks, but on different types of input data. The ability to overload functions and procedures can lead to 
ambiguities when functions are called, if the types of one or more arguments are not explicitly stated. 

For example, consider two type conversion functions with the following interface declarations: 

function to_integer (vec: bit_vector) return integer is 

    . . . 
end to_integer; 

function to_integer (s: string) return integer is 

    . . . 
end to_integer; 

If you were to write an assignment statement such as: 

architecture ambiguous of my_entity is 

    signal Int35: integer; 

begin 
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    Int35 <= to_integer("00100011");   -- This will produce an error 

    . . . 
end ambiguous; 

then the compiler would produce an error message because it would be unable to determine which of 
the two functions is appropriate – the literal "00100011" could be either a string or bit_vector data 
type. 

To remove data type ambiguity in such cases, you have two options: you can either introduce an 
intermediate constant, signal or variable, as in: 

architecture unambiguous1 of my_entity is 

    constant Vec35: bit_vector := "00100011"; 

    signal Int35: integer; 

begin 

    Int35 <= to_integer(Vec35); 

    . . . 
end unambiguous1; 

or introduce a type mark to qualify the argument, as in: 

architecture unambiguous2 of my_entity is 

    signal Int35: integer; 

begin 

    Int35 <= to_integer(bit_vector'"00100011"); 

    . . . 
end unambiguous2; 

Resolved and unresolved types 
A signal requires resolution whenever it is simultaneously driven with more than one value. By default, 
data types (whether standard types or types you define) are unresolved, resulting in errors being 
generated when there are multiple values being driven onto signals of those types. These error 
messages may be the desired behavior, as it is usually a design error when such conditions occur. If 
you actually intend to drive a signal with multiple values (as in the case of a bus interface), then you will 
need to use a resolved data type. 

Data types are resolved only when a resolution function has been included as a part of their definition. 
A resolution function is a function that specifies, for all possible combinations of one or more input 
values (expressed as an array of the data type being resolved), what the resulting (resolved) value will 
be. 
The following sample package defines a resolved data type consisting of four possible values, '0', 
'1', 'X' and 'Z'. The resolution function covers all possible combinations of input values and 
specifies the resolved value corresponding to each combination: 
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package types is 

    type xbit is ( '0',  -- Logical  0 

                   '1',  -- Logical  1 

                   'X',  -- Unknown        

                   'Z' ); -- High Impedance 

    -- unconstrained array is required for the resolution function... 
    type xbit_vector is array ( natural range <> ) of xbit; 

                                     

    -- resolution function... 
    function resolve_xbit ( v : xbit_vector ) return xbit; 

    -- resolved logic type... 
    subtype xbit_resolved is resolve_xbit xbit; 

end types; 

package body types is 

    -- Define resolutions as a table... 
    type xbit_table is array(xbit, xbit) of xbit; 

    constant resolution_table: xbit_table := ( 

    --         0    1    X    Z  

            ( '0', 'X', 'X', '0' ), --  0 

            ( 'X', '1', 'X', '1' ), --  1 

            ( 'X', 'X', 'X', 'X' ), --  X 

            ( '0', '1', 'X', 'Z' )  --  Z 

     ); 

         
    function resolve_xbit ( v: xbit_vector ) return xbit is 

        variable result: xbit; 

    begin 

        -- test for single driver 
        if (v'length = 1) then 

            result := v(v'low); -- Return the same value if only 1 value 
        else 

            result := 'Z'; 
            for i in v'range loop 

                result := resolution_table(result, v(i)); 
            end loop; 

        end if; 
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        return result; 

    end resolve_xbit; 

end types; 

The resolution function is invoked automatically whenever a signal of the associated type is driven with 
one or more values. The array argument v represents all of the values being driven onto the signal at 
any given time. 
With the types xbit and xbit_resolved defined in this way, the resolved data type 
xbit_resolved can be used for situations in which resolutions are required. The following example 
shows how the resolved type xbit_resolved could be used to describe the operation of a pair of 
three-state signals driving a common signal: 

use work.types.all; 

entity threestate is 

    port (en1, en2: in xbit_resolved; 

            A,B: in xbit_resolved; 

            O: out xbit_resolved); 

end threestate; 

architecture sample of threestate is 

    signal tmp1,tmp2: xbit_resolved; 

begin 

    tmp1 <= A when en1 else 'Z'; 

    tmp2 <= B when en2 else 'Z'; 

    O <= tmp1; 

    O <= tmp2; 
end sample; 

In this example, the output O could be driven with various combinations of the values of A and B and 
the value 'Z', depending on the states of the two inputs en1 and en2. The resolution function takes 
care of calculating the correct value for O for any of these combinations during simulation. 

Notes 
As a practical matter, you should never write an arbitrary-width type conversion function that you intend 
to use in a synthesizable design description. Instead, you should make use of type conversion 
functions provided by your synthesis vendor or use the 1076.3 signed or unsigned type. 
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VHDL Operators 
Operator: abs 

An absolute value operator which can be applied to any numeric type in an expression. 

Example: Delta <= abs(A-B) 

Operator: xnor 
The logical “both or neither” (equality) operator which can be used in an expression.  The expression 
“A xnor B” returns True only when (1) A is true and B is true, or (2) A is false and B is false. 

Operator: and 

The logical “and” operator which can be used in an expression.  The expression “A and B” returns true 
only if both A and B are true. 

Operator: mod 

The modulus operator which can be applied to integer types.  The result of the expression “A mod B” is 
an integer type and is defined to be the value such that: 

(1)  the sign of (A mod B) is the same as the sign of B, and  

(2)  abs (A mod B) < abs (B), and 

(3)  (A mod B) = (A * (B - N)) for some integer N. 

Operator: nand 

The logical “not and” operator which can be used in an expression.  It produces the opposite of the 
logical “and” operator.  The expression “A nand B” returns True only when (1) A is false, or (2) B is 
false, or (3) both A and B are false. 

Operator: nor 
The logical “not or” operator which can be used in an expression.  It produces the opposite of the 
logical “or” operator. The expression “A nor B” returns True only when both A and B are false. 

Operator: not 
The logical “not” operator which can be used in an expression.  The expression “not A” returns True if 
A is false and returns False if A is true. 

Operator: or 
The logical “or” operator which can be used in an expression.  The expression “A or B” returns True if 
(1) A is true, or (2) B is true, or (3) both A and B are true. 

Operator: rem 

The remainder operator which can be applied to integer types.  The result of the expression “A rem B” 
is an integer type and is defined to be the value such that: 

(1)  the sign of (A rem B) is the same as the sign of A, and  

(2)  abs (A rem B) < abs (B), and 

(3)  (A rem B) = (A - (A / B) * B). 
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Operator: rol 
Rotate left operator. 

Example: Sreg <= Sreg rol 2; 

Operator: ror 
Rotate right operator. 

Example: Sreg <= Sreg ror 2; 

Operator: sla 

Shift left arithmetic operator. 

Example: Addr <= Addr sla 8; 

Operator: sll 
Shift left logical operator. 

Example: Addr <= Addr sll 8; 

Operator: sra 

Shift right arithmetic operator. 

Example: Addr <= Addr sra 8; 

Operator: srl 
Shift right logical operator. 

Example: Addr <= Addr srl 8; 

Operator: xor 
The logical “one or the other but not both” (inequality) operator which can be used in an expression. 
 The expression “A xor B” returns True only when (1) A is true and B is false, or (2) A is false and B is 
true. 

Operator: = 

The equality operator which can be used in an expression on any type except file types.  The resulting 
type of an expression using this operator is Boolean (that is, True or False).  The expression “A = B” 
returns True only if A and B are equal. 

Operator: /= 

The inequality operator which can be used in an expression on any type except file types.  The 
resulting type of an expression using this operator is Boolean (that is, True or False).  The expression 
“A /= B” returns True only if A and B are not equal. 

Operator: := 

The assignment operator for a variable.  The expression “TEST_VAR := 1” means that the variable 
TEST_VAR is assigned the value 1. 
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Operator: < 

The “less than” operator which can be used in an expression on scalar types and discrete array types. 
 The resulting type of an expression using this operator is Boolean (that is, True or False).  The 
expression “A < B” returns True only if A is less than B. 

Operator: <= 

This symbol has two purposes.  When used in an expression on scalar types and discrete array types, 
it is the “less than or equal to” operator.  The resulting type of an expression using this operator in this 
context is Boolean (that is, True or False).  In this context, the expression “A <= B” returns True only if 
A is less than or equal to B, for example: 

LE := '1' when A <= B else '0'; 

In a signal assignment statement, the symbol “<=“ is the assignment operator.  Thus, the expression 

TEST_SIGNAL <= 5; 

means that the signal TEST_SIGNAL is assigned the value 5. 

Operator: > 

The “greater than” operator which can be used in an expression on scalar types and discrete array 
types.  The resulting type of an expression using this operator is Boolean (that is, True or False).  The 
expression “A > B” returns True only if A is greater than B. 

Operator: >= 

The “greater than or equal to” operator which can be used in an expression on scalar types and 
discrete array types.  The resulting type of an expression using this operator is Boolean (that is, True or 
False).  The expression “A >= B” returns True only if A is greater than or equal to B. 

Operator: + 

The addition operator.  Both operands must be numeric and of the same type.  The result is also of the 
same numeric type.  Thus, if A = 2 and B = 3, the result of the expression “A + B” is 5.   

This operator may also be used as a unary operator representing the identity function.  Thus, the 
expression “+A” would be equal to A. 

Operator: - 
The subtraction operator.  Both operands must be numeric and of the same type.  The result is also of 
the same numeric type.  Thus, if A = 5 and B = 3, the result of the expression “A - B” is 2. 

This operator may also be used as a unary operator representing the negative function.  Thus, the 
expression “-A” would be equal to the negative of A. 

Operator: & 

The concatenation operator.  Each operand must be either an element type or a 1-dimensional array 
type. The result is a 1-dimensional array type. 

Operator: * 
The multiplication operator.  Both operands must be of the same integer or floating point type.   
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The multiplication operator can also be used where one operand is of a physical type and the other is 
of an integer or real type.  In these cases, the result is of a physical type. 

Operator: / 
The division operator. Both operands must be of the same integer or floating point type. 

The division operator can also be used where a physical type is being divided by either an integer type 
or a real type.  In these cases, the result is of a physical type.  Also, a physical type can be divided by 
another physical type, in which case the result is an integer. 

Operator: ** 
The exponentiation operator.  The left operand must be of an integer type or a floating point type, and 
the right operand (the exponent) must be of an integer type.  The result is of the same type as the left 
operand. 

Understanding VHDL Operators 
The following sections summarize the operators available in VHDL. As indicated, not all operators can 
be used for all data types, and the data type that results from an operation may differ from the type of 
the object on which the operation is performed. 

Logical operators 

The logical operators and, or, nand, nor, xor and xnor are used to describe Boolean logic operations, or 
perform bit-wise operations, on bits or arrays of bits. 

Operator Description Operand Types Result Types 

and AND Any Bit or Boolean type Same Type 

or OR Any Bit or Boolean type Same Type 

nand NOT AND Any Bit or Boolean type Same Type 

nor NOT OR Any Bit or Boolean type Same Type 

xor Exclusive OR Any Bit or Boolean type Same Type 

xnor Exclusive NOR Any Bit or Boolean type Same Type 

Relational operators 

Relational operators are used to test the relative values of two scalar types. The result of a relational 
operation is always a Boolean true or false value. 

Operator Description Operand Types Result Type 

= Equality Any type Boolean 

/= Inequality Any type Boolean 

< Less than Any scalar type or discrete array Boolean 
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<= Less than or equal Any scalar type or discrete array Boolean 

> Greater than Any scalar type or discrete array Boolean 

>= Greater than or equal Any scalar type or discrete array Boolean 

Adding operators 

The adding operators can be used to describe arithmetic functions or, in the case of array types, 
concatenation operations. 

Operator Description Operand Types Result Type 

+ Addition Any numeric type Same type 

- Subtraction Any numeric type Same type 

& Concatenation Any numeric type Same type 

& Concatenation Any array or element type Same array type 

Multiplying operators 

The multiplying operators can be used to describe mathematical functions on numeric types. 

Operator Description Operand Types Result Type 

* Multiplication Left: any integer or floating point 
type. 

Right: same type 

Same as left 

* Multiplication Left: any physical type. 

Right: integer or real type. 

Same as left 

* Multiplication Left: integer or real type. 

Right: any physical type. 

Same as right 

/ Division Left: any integer or floating point 
type. 

Right: same type 

Same as left 

/ Division Left: any integer or floating point 
type. 

Right: same type 

Same as left 

/ Division Left: integer or real type. 

Right: any physical type. 

Same as right 

mod Modulus Any integer type Same type 

rem Remainder Any integer type Same type 
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Sign operators 

Sign operators can be used to specify the sign (either positive or negative) of a numeric object or 
literal. 

Operator Description Operand Types Result Type 

+ Identity Any numeric type Same type 

- Negation Any numeric type Same type 

Miscellaneous operators 

The exponentiation and absolute value operators can be applied to numeric types, in which case they 
result in the same numeric type. The logical negation operator results in the same type (bit or Boolean), 
but with the reverse logical polarity. The shift operators provide bit-wise shift and rotate operations for 
arrays of type bit or Boolean. 

Operator Description Operand Types Result Type 

** Exponentiation Left: any integer type 

Right: integer type  

Same as left 

** Exponentiation Left: any floating point type 

Right: integer type 

Same as left 

abs Absolute value Any numeric type Same as left 

not Logical negation Any Bit or Boolean type Same as left 

sll Shift left logical Left: Any one-dimensional array of Bit or 
Boolean 

Right: integer type 

Same as left 

srl Shift right logical Left: Any one-dimensional array of Bit or 
Boolean 

Right: integer type 

Same as left 

sla Shift left arithmetic Left: Any one-dimensional array of Bit or 
Boolean 

Right: integer type 

Same as left 

sra Shift right arithmetic Left: Any one-dimensional array of Bit or 
Boolean 

Right: integer type 

Same as left 

rol Rotate left Left: Any one-dimensional array of Bit or 
Boolean 

Right: integer type 

Same as left 
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ror Rotate right Left: Any one-dimensional array of Bit or 
Boolean 

Right: integer type 

Same as left 

Notes 
Operations defined for types Bit are also valid for type std_ulogic and std_logic. 

Synthesis tools vary in their support for multiplying operators. 

Understanding VHDL Attributes 
Attributes are a feature of VHDL that allow you to extract additional information about an object (such 
as a signal, variable or type) that may not be directly related to the value that the object carries. 
Attributes also allow you to assign additional information (such as data related to synthesis) to objects 
in your design description. 

There are two classes of attributes: those that are predefined as a part of the 1076 standard, and those 
that have been introduced outside of the standard, either by you or by your design tool supplier. 

Predefined attributes 
The VHDL specification describes five fundamental kinds of attributes. These five kinds of attributes 
are categorized by the results that are returned when they are used. The possible results returned from 
these attributes are: a value, a function, a signal, a type or a range.  

Predefined attributes are always applied to a prefix (such as a signal or variable name, or a type or 
subtype name), as in the statement: 

wait until Clk = '1' and Clk'event and Clk'last_value = '0'; 

In this statement, the attributes 'event and 'last_value have been applied to the prefix Clk, which 
is a signal. 

Some attributes also include parameters, so they are written in much the same way you would write a 
call to a function: 

variable V: state_type := state_type'val(2); 

In this case, the attribute 'val has been applied to the prefix state_type (which is a type name) and 
has been given an attribute parameter, the integer value 2. 

Value kind attributes 

Value kind attributes: 'Left, 'Right, 'High, 'Low, 'Length, 'Ascending 
The value kind attributes that return an explicit value and are applied to a type or subtype include the 
following: 
• 'Left– this attribute returns the left-most element index (the bound) of a given type or subtype. 

Example: 
type bit_array isarray (1 to 5) of bit; 

      variable L: integer := bit_array'left; -- L has a value of 1 

• 'Right– this attribute returns the right-most bound of a given type or subtype. 



VHDL Language Reference 

42 TR0114 (v1.1) May 20, 2005 

Example: 
type bit_array is array (1 to 5) of bit; 

      variable R: integer := bit_array'right; -- R has a value of 5 

• 'High– this attribute returns the upper bound of a given scalar type or subtype. 

Example: 
type bit_array is array(-15 to +15) of bit; 

      variable H: integer := bit_array'high; -- H has a value of 15 

• 'Low– this attribute returns the upper bound of a given scalar type or subtype. 

Example: 
type bit_array is array(15 downto 0) of bit; 

      variable L: integer := bit_array'low;  -- L has a value of 0 

• 'Length– this attribute returns the length (number of elements) of an array. 

Example: 
type bit_array is array (0 to 31) of bit; 

variable LEN: integer := bit_array'length -- LEN has a value of 32 

• 'Ascending– this attribute (VHDL '93 attribute) returns a boolean true value if the type or subtype is 
declared with an ascending range. 

Example: 
type asc_array is array (0 to 31) of bit; 

type desc_array is array (36 downto 4) of bit; 

variable A1: boolean := asc_array'ascending; -- A1 has a value of true 

variable A2: boolean := desc_array'ascending; -- A2 has a value of false 

As you can see from the examples, value kind attributes (and all other predefined attributes) are 
identified by the ' (single quote) character. They are applied to type names, signals names and other 
identifiers, depending on the nature of the attribute. The value type attributes are used to determine the 
upper and lower (or left and right) bounds of a given type. 

The following sample architecture uses the 'right and 'left attributes to determine the left- and right-most 
element indices of an array in order to describe a width-independent shift operation: 

architecture behavior of shifter is 

begin 

    reg: process(Rst,Clk) 

    begin 

        if Rst = '1' then  -- Async reset 

            Qreg := (others => '0'); 

        elsif rising_edge(Clk) then 

            Qreg := Data(Data'left+1 to Data'right) & Data(Data'left); 

        end if; 
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    end process; 

end behavior; 

The 'right, 'left, 'high and 'low attributes can be used to return non-numeric values. The following 
example demonstrates how you can use the 'left and 'right attributes to identify the first and last items 
in an enumerated type: 

architecture example of enums is 

    type state_type is (Init, Hold, Strobe, Read, Idle); 

    signal L, R: state_type; 

begin 

    L <= state_type'left; -- L has the value of Init 

    R <= state_type'right; -- R has the value of Idle 
end example; 

Value kind attributes: 'Structure, 'Behavior 
There are two additional value kind attributes that can be used to determine information about blocks 
or attributes in a design. These attributes, 'structure and 'behavior, return true or false values 
depending on whether the block or architecture being referenced includes references to lower-level 
components. 
• 'Structure– this attribute returns a true value if the prefix (which must be an architecture name) 

includes references to lower-level components. 
• 'Behavior – this attribute returns a true value if the prefix (which must be an architecture name) 

does not include references to lower-level components. 

Value kind attributes: 'Simple_name, 'Instance_name, 'Path_name 
VHDL 1076-1993 added three attributes that can be used to determine the precise configuration of 
entities in a design description. These attributes return information about named entities, which are 
various items that become associated with identifiers, character literals or operator symbols as the 
result of a declaration. 
• 'Simple_name – this attribute returns a string value corresponding to the prefix, which must be a 

named entity. 
• 'Instance_name – this attribute returns a string value corresponding to the complete path (from the 

design hierarchy root) to the named entity specified in the prefix, including the names of all 
instantiated design entities. The string returned by this attribute has a fixed format that is defined in 
the IEEE VHDL Language Reference Manual. 

• 'Path_name – this attribute returns a string value corresponding to the complete path (from the 
design hierarchy root) to the named entity specified in the prefix. The string returned by this 
attribute has a fixed format that is defined in the IEEE VHDL Language Reference Manual. 

Function kind attributes 

Function kind attributes: 'Pos, 'Val, 'Succ, 'Pred, 'Leftof, 'Rightof 
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Attributes that return information about a given type, signal, or array value are called function kind 
attributes. VHDL defines the following function kind attributes that can be applied to types: 
• 'Pos(value)– this attribute returns the position number of a type value. 

Example: 
type state_type is (Init, Hold, Strobe, Read, Idle); 

variable P: integer := state_type'pos(Read); -- P has the value of 3 

• 'Val(value)– this attribute returns the value corresponding to a position number of a type value. 

Example: 
type state_type is (Init, Hold, Strobe, Read, Idle); 

variable V: state_type := state_type'val(2); -- V has the value of Strobe 

• 'Succ(value)– this attribute returns the value corresponding to position number after a given type 
value. 

Example: 
type state_type is (Init, Hold, Strobe, Read, Idle); 

variable V: state_type := state_type'succ(Init); -- V has the value of 
Hold 

• 'Pred(value)– this attribute returns the value corresponding to position number preceding a given 
type value. 

Example: 
type state_type is (Init, Hold, Strobe, Read, Idle); 

variable V: state_type := state_type'pred(Hold); -- V has the value of 
Init 

• 'Leftof(value)– this attribute returns the value corresponding to position number to the left of a 
given type value. 

Example: 
type state_type is (Init, Hold, Strobe, Read, Idle); 

variable V: state_type := state_type'leftof(Idle); -- V has the value of 
Read 

• 'Rightof(value)– this attribute returns the value corresponding to position number to the right of a 
given type value. 

Example: 
type state_type is (Init, Hold, Strobe, Read, Idle); 

variable V: state_type := state_type'rightof(Read); -- V has the value of 
Idle 

From the above descriptions, it might appear that the 'val and 'succ attributes are equivalent to the 
attributes 'leftof and 'rightof. One case where they would be different is the case where a subtype is 
defined that changes the ordering of the base type: 

type state_type is (Init, Hold, Strobe, Read, Idle); 
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subtype reverse_state_type is state_type range Idle downto Init; 

variable V1: reverse_state_type := reverse_state_type'leftof(Hold); 

-- V1 has the value of Strobe 
variable V2: reverse_state_type := reverse_state_type'pred(Hold); 

-- V2 has the value of Init 

Function kind array attributes: 'Left, 'Right, 'High, 'Low 
The function kind attributes that can be applied to array objects include: 
• 'Left(value)– this attribute returns the index value corresponding to the left bound of a given array 

range. 

Example: 
type bit_array is array (15 downto 0) of bit; 

variable I: integer := bit_array'left(bit_array'range); -- I has the 
value of 15 

• 'Right(value)– this attribute returns the index value corresponding to the right bound of a given 
array range. 

Example: 
type bit_array is array (15 downto 0) of bit; 

variable I: integer := bit_array'right(bit_array'range); -- I has the 
value of 0 

• 'High(value)– this attribute returns the index value corresponding to the upper-most bound of a 
given array range. 

Example: 
type bit_array is array (15 downto 0) of bit; 

variable I: integer := bit_array'high(bit_array'range); -- I has the 
value of 15 

• 'Low(value)– this attribute returns the index value corresponding to the lower bound of a given 
array range. 

Example: 
type bit_array is array (15 downto 0) of bit; 

variable I: integer := bit_array'low(bit_array'range); -- I has the value 
of 0 

Function kind attributes: 'Event, 'Active, 'Last_event, 'Last_value, 'Last_active 
Function kind attributes that return information about signals (such as whether that signal has changed 
its value or its previous value) include: 
• 'Event– this attribute returns a true value of the signal had an event (changed its value) in the 

current simulation delta cycle. 

Example: 
process(Rst,Clk) 
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begin 

    if Rst = '1' then 

        Q <= '0'; 
    elsif Clk = '1' and Clk'event then -- Look for clock edge 

        Q <= D; 
    end if; 

end process; 

• 'Active– this attribute returns true if any transaction (scheduled event) occurred on this signal in the 
current simulation delta cycle. 

Example: 
process 

variable A,E: boolean; 

begin 

    Q <= D after 10 ns; 

    A := Q'active; -- A gets a value of True 

    E := Q'event; -- E gets a value of False 

    . . . 
end process; 

• 'Last_event– this attribute returns the time elapsed since the previous event occurring on this 
signal. 

Example: 
process 

variable T: time; 

begin 

    Q <= D after 5 ns; 

    wait 10 ns; 

    T := Q'last_event;    -- T gets a value of 5 ns 

    . . . 
end process; 

• 'Last_value– this attribute returns the value of the signal prior to the last event. 

Example: 
process 

variable V: bit; 

begin 

    Q <= '1'; 
    wait 10 ns; 

    Q <= '0'; 
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    wait 10 ns; 

    V := Q'last_value;     -- V gets a value of  '1' 

    . . . 
end process; 

• 'Last_active– this attribute returns the time elapsed since the last transaction (scheduled event) of 
the signal. 

Example: 
process 

variable T: time; 

begin 

    Q <= D after 30 ns; 

    wait 10 ns; 

    T := Q'last_active;   -- T gets a value of 10 ns 

    . . . 
end process; 

Function kind attributes: 'Image, 'Value 
The 'image and 'value attributes were added in the 1993 specification to simplify the reporting of 
information through Text I/O. These attributes both return string results corresponding to their 
parameter values. 
• 'Image(expression)– this attribute (VHDL '93 attribute) returns a string representation of the 

expression parameter, which must be of a type corresponding to the attribute prefix. 

Example: 
assert (Data.Q = '1') 

    report “Test failed on vector “ & integer'image(vector_idx) 

    severity Warning; 

• 'Value(string)– this attribute (VHDL '93 attribute) returns a value, of a type specified by the prefix, 
corresponding to the parameter string. 

Example: 
write(a_outbuf,string'(“Enter desired state (example: S1)”)); 

writeline(OUTPUT,a_outbuf); 

readline(INPUT,a_inbuf); 

read(a_inbuf,instate);   -- instate is a string type 

next_state <= state_type'value(instate); 

-- convert string to type state_type 

write(a_outbuf,string'(“Enter duration (example: 15)”)); 

writeline(OUTPUT,a_outbuf); 

readline(INPUT,a_inbuf); 
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read(a_inbuf,induration);     -- induration is a string type 

duration <= integer'value(induration); 

-- convert string to type integer 

Signal kind attributes 

Signal kind attributes: 'Delayed, 'Stable, 'Quiet, 'Transaction 
The signal kind attributes are attributes that, when invoked, create special signals that have values and 
types based on other signals. These special signals can then be used anywhere in the design 
description that a normally declared signal could be used. One example of where you might use such 
an attribute is to create a series of delayed clock signals that are all based on the waveform of a base 
clock signal. 

Signal kind attributes include the following: 
• 'Delayed(time)– this attribute creates a delayed signal that is identical in waveform to the signal the 

attribute is applied to. (The time parameter is optional, and may be omitted.) 

Example: 
process(Clk'delayed(hold))  

-- Hold time check for input Data 
  begin 

    if Clk = '1' and Clk'stable(hold) then 

        assert(Data'stable(hold)) 

            report "Data input failed hold time check!" 

           severity Warning; 

    end if; 

end process; 

• 'Stable (time)– this attribute creates a signal of type boolean that becomes true when the signal is 
stable (has no event) for some given period of time. 

Example: 
process 

variable A: Boolean; 

begin 

    wait for 30 ns; 

    Q <= D after 30 ns; 

    wait 10 ns; 

    A := Q'stable(20 ns);  

       -- A gets a value of true (event has not  

-- yet occurred) 
    wait 30 ns;  

    A := Q'stable(20 ns);   
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-- A gets a value of false (only 10 ns  

-- since event) 

    . . . 
end process; 

• 'Quiet (time)– this attribute creates a signal of type boolean that becomes true when the signal has 
no transactions (scheduled events) or actual events for some given period of time. 

Example: 
process 

variable A: Boolean; 

begin 

    wait for 30 ns; 

    Q <= D after 30 ns; 

    wait 10 ns; 

    A := Q'quiet(20 ns); 

-- A gets a value of false (10 ns since 

-- transaction) 
    wait 40 ns; 

    A := Q'quiet(20 ns); 

-- A finally gets a value of true (20 ns  

-- since event) 

    . . . 
end process; 

• 'Transaction– this attribute creates a signal of type bit that toggles its value whenever a transaction 
or actual event occurs on the signal the attribute is applied to. 

Type kind attributes 

Type kind attribute: 'Base 
• 'Base– this attribute returns the base type for a given type or subtype. 

Example: 
type mlv7 is ('0','1','X','Z','H','L','W'); 

subtype mlv4 is mlv7 range '0' to 'Z'; 

variable V1: mlv4 := mlv4'right; 

-- V1 has the value of 'Z' 
variable V2: mlv7 := mlv4'base'right; 

-- V2 has the value of 'W' 
variable I1: integer := mlv4'width; 

-- I1 has the value of 4 
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variable I2: integer := mlv4'base'width; 

-- I2 has the value of 7 

Range kind attributes 

Range Kind Attributes: 'Range, 'Reverse_range 
The range kind attributes return a special value that is a range, such as you might use in a declaration 
or looping scheme. 
• 'Range– this attribute returns the range value for a constrained array. 

Example: 
function parity(D: std_logic_vector) return 

std_logic is 

    variable result: std_logic := '0'; 

begin 

    for i in D'range loop 

        result := result xor D(i); 

    end loop; 

    return result; 

end parity; 

• 'Reverse_range– this attribute returns the reverse of the range value for a constrained array. 

Example: 
STRIPX: for i in D'reverse_range loop 

        if D(i) = 'X' then 

            D(i) = '0'; 
        else 

            exit; -- only strip the terminating Xs 

        end if; 

    end loop; 

Custom attributes 
Custom attributes are those attributes that are not defined in the IEEE specifications, but that you (or 
your simulation or synthesis tool vendor) define for your own use. A good example is the attribute 
enum_encoding, which is provided by a number of synthesis tool vendors to allow specific binary 
encodings to be attached to objects of enumerated types. 

An attribute such as enum_encoding is declared (again, either by you or by your design tool vendor) 
using the following method: 

attribute enum_encoding: string; 
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This attribute could be written directly in your VHDL design description, or it could have been provided 
to you by the tool vendor in the form of a package. Once the attribute has been declared and given a 
name, it can be referenced as needed in the design description: 

type statevalue is (INIT, IDLE, READ, WRITE, ERROR); 

attribute enum_encoding of statevalue: type is "000 001 011 010 110"; 

When these declarations are processed by a synthesis tool that supports the enum_encoding attribute, 
information about the encoding of the type statevalue will be used by that tool. When the design is 
processed by design tools (such as simulators) that do not recognize the enum_encoding attribute, it 
will simply be ignored. 

Custom attributes are a convenient "back door" feature of VHDL, and design tool vendors have created 
many such attributes to give you more control over the synthesis and simulation process. For detailed 
information about custom attributes, refer to your design tool documentation. 

Notes 
The function kind attributes 'active, 'last_event, 'last_value and 'last_active are not generally supported 
in synthesis tools. Only the 'event attribute should be used when describing synthesizable registered 
circuits. The 'active, 'last_event, 'last_value and 'last_active attributes should only be used to describe 
circuits for test purposes (such as for setup and hold checking). If they are encountered by a synthesis 
program, they will either be ignored, or the program will return an error and halt operation. 
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Using Standard Logic 
This section takes a closer look at two important standards that augment Standard 1076, adding 
important capabilities for both simulation and synthesis. These two standards are IEEE Standards 
1164 and 1076.3. 

IEEE Standard 1164 
IEEE Standard 1164 was released in the late 1980s, and helped to overcome an important limitation of 
VHDL and its various commercial implementations. These limitations were created by the fact that 
VHDL, while being rich in data types, did not include a standard type that would allow multiple values 
(high-impedance, unknown, etc.) to be represented for a wire. These metalogic values are important 
for accurate simulation, so VHDL simulation vendors were forced to invent their own proprietary data 
types using syntactically correct, but non-standard, enumerated types. 

IEEE 1164 replaces these proprietary data types (which include systems having four, seven, or even 
thirteen unique values) with a standard data type having nine values, as shown below: 

Value Description 

'U' Uninitialized 

'X' Unknown 

'0' Logic 0 (driven) 

'1' Logic 1 (driven) 

'Z' High impedance 

'W' Weak 1 

'L' Logic 0 (read) 

'H' Logic 1 (read) 

'-' Don't-care 

These nine values make it possible to accurately model the behavior of a digital circuit during 
simulation. For synthesis users, the standard has additional benefits for describing circuits that involve 
output enables, as well as for specifying don't-care logic that can be used to optimize the combinational 
logic requirements of a circuit. 

Advantages of IEEE 1164 
There are many compelling reasons to adopt IEEE Standard 1164 for all of your design efforts and to 
use it as a standard data type for all system interfaces. For simulation purposes, the standard logic 
data types allow you to apply values other than '0' or '1' as inputs and view the results. This capability 
could be used, for example, to verify that an input with an unknown (uninitialized or don't-care) value 
does not cause the circuit to behave in an unexpected manner. The resolved standard logic data types 
can be used to model the behavior of multiple drivers in your circuit. You might use these types to 
model, for example, the behavior of a three-state bus driver. 
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The most important reason to use standard logic data types is portability: if you will be interfacing to 
other components during simulation (such as those obtained from third party simulation model 
providers) or moving your design description between different simulation environments, then IEEE 
1164 gives you a standard, portable style with which to describe your circuit. 

Using the standard logic package 
To use the IEEE 1164 standard logic data types, you will need to add at least two statements to your 
VHDL source files. These statements (shown below) cause the IEEE 1164 standard library (named 
ieee) to be loaded and its contents (the std_logic_1164 package) made visible: 

library ieee; 

use ieee.std_logic_1164.all; 

In most design descriptions, you will place these two statements at the top of your source file, and 
repeat them as needed prior to subsequent design units (entity and architecture pairs) in the file. If your 
source file includes more than one design unit, you need to repeat the use statement just prior to each 
design unit in order to make the contents of the standard library visible to each design unit, as shown 
below: 

library ieee; 

use ieee.std_logic_1164.all; 

package my_package is 

    . . . 
end my_package; 

use ieee.std_logic_1164.all; 

entity first_one is 

    . . . 
end first_one; 

use ieee.std_logic_1164.all; 

architecture structure of first_one is 

    . . . 
end structure; 

use ieee.std_logic_1164.all; 

entity second_one is 

    . . . 
end second_one; 

Once you have included the ieee library and made the std_logic_1164 package visible in your design 
description, you can make use of the data types, operators and functions provided for you as a part of 
the standard. 
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There are two fundamental data types provided for you in the std_logic_1164 package. These data 
types, std_logic and std_ulogic, are enumerated types defined with nine symbolic (single character) 
values. The following definition of std_ulogic is taken directly from the IEEE 1164 standard: 

type std_ulogic is ( 'U',  -- Uninitialized 

                     'X',   -- Forcing Unknown 

                     '0',   -- Forcing 0 

                     '1',   -- Forcing 1 

                     'Z',   -- High Impedance    

                     'W',   -- Weak Unknown 

                     'L',   -- Weak 0        

                     'H',   -- Weak 1        

                     '-'    -- Don't care 

                   ); 

The std_ulogic data type is an unresolved type, meaning that it is illegal for two values (such as '0' and 
'1', or '1' and 'Z') to be simultaneously driven onto a signal of type std_ulogic. If you are not describing a 
circuit that will be driving different values onto a wire (as you might in the case of a bus interface), then 
you might want to use the std_ulogic data type to help catch errors (such as incorrectly specified, 
overlapping combinational logic) in your design description. If you are describing a circuit that involves 
multiple values being driven onto a wire, then you will need to use the type std_logic. Std_logic is a 
resolved type based on std_ulogic. Resolved types are declared with resolution functions. Resolution 
functions define the resulting behavior when an object is driven with multiple values simultaneously. 

When using either of these data types, you will use them as one-for-one replacements for the built-in 
type bit. The following example shows how you might use the std_logic data type to describe a simple 
NAND gate coupled to an output enable: 

library ieee; 

use ieee.std_logic_1164.all; 

entity nandgate is 

    port (A, B, OE: in std_logic; Y: out std_logic); 

end nandgate; 

architecture arch1 of nandgate is 

    signal n: std_logic; 

begin 

    n <= not (A and B); 

    Y <= n when OE = '0' else 'Z'; 

end arch1; 

As written, it is not actually necessary for this circuit to be described using the resolved type std_logic 
for correct simulation. Operated as a stand-alone circuit, the output Y will never be driven with two 
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different values. When connected through hierarchy into a larger circuit, however, it is highly likely that 
such a situation will occur, and std_logic will thus be required. 

Std_logic_vector and Std_ulogic_vector 
In addition to the single-bit data types std_logic and std_ulogic, IEEE Standard 1164 includes array 
types corresponding to each of these types. Both std_logic_vector and std_ulogic_vector are defined in 
the std_logic_1164 package as unbounded arrays similar to the built-in type bit_vector. In practice, you 
will probably use std_logic_vector or std_ulogic_vector with an explicit width, or you will use a subtype 
to create a new data type based on std_logic_vector or std_ulogic_vector of the width required. The 
following sample design description uses a subtype (defined in an external package) to create an 8-bit 
array based on std_ulogic_vector: 

library ieee; 

use ieee.std_logic_1164.all; 

package my_types is 

    subtype std_byte is std_ulogic_vector(7 downto 0); 

end my_types; 

use ieee.std_logic_1164.all; 

entity shiftl is 

    port (DataIN: in std_byte; DataOUT: out std_byte; Err: out std_ulogic); 

end shiftl; 

architecture arch1 of shiftl is 

    signal n: std_logic; 

begin 

    DataOUT <= DataIN(DataIN'left - 1 downto 0) & '0';    -- Shift left one 
bit 

    Err <= DataIN(DataIN'left);    -- Check for overflow 
end arch1; 

In this example (an 8-bit shifter), the subtype std_byte is defined in terms of std_ulogic_vector and 
can be used to replace std_ulogic_vector(7 downto 0) throughout the design description. The 
circuit is described in such a way that the width of the shifter is dependent only on the width of the type 
std_byte, so it is easy to modify the width of the circuit later. 

Notes 
VHDL has special visibility rules for architectures: it is not necessary to place a use statement prior to 
an architecture declaration if the corresponding entity declaration includes a use statement. In the first 
example above, the use statement appearing prior to the architecture structure is not actually 
needed and could be omitted. 
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Type conversion and standard logic 
If you need to describe operations such as counters that are not directly supported in the standard logic 
data types, you will almost certainly have to make use of type conversion functions to convert  the 
standard logic data types at your system interfaces to types such as integers that support such 
operations. 

Type conversion functions are functions that accept an object of one data type and return the 
equivalent data value represented as a different data type. Some type conversion functions are 
provided in the IEEE 1164 std_logic_1164 package (functions to convert between std_logic_vector and 
bit_vector, for example), but no functions are provided in that package to convert between standard 
logic data types and numeric data types such as integers. 

Arithmetic circuits (such as adders and counters) are common elements of modern digital systems, and 
of design descriptions intended for synthesis. So what do you do if you want to use standard logic data 
types and describe arithmetic operations? There are actually a number of possible solutions to this 
problem. 

The first solution is to write your own synthesizable type conversion functions, so that you can translate 
between standard logic values that you will use for your system interfaces (such as the ports for your 
entities) and the internal numeric type signals and variables you will need to describe your arithmetic 
function. This is actually a rather poor solution, as it can be quite difficult (perhaps impossible) to write 
a general-purpose (meaning width-independent) type conversion function that your synthesis tool can 
handle. 

The second solution is to make use of custom type conversion functions or data types that have been 
provided by your synthesis vendor for use with their tool. An example of such a method (using the 
std_logic_arith package provided by Synopsys) is shown below: 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

entity COUNT16 is 

    port (Clk,Rst,Load: in std_logic; 

          Data: in std_logic_vector(3 downto 0); 

          Count: out std_logic_vector(3 downto 0) 

    ); 
end COUNT16; 

architecture COUNT16_A of COUNT16 is 

begin 

    process(Rst,Clk) 

        -- The unsigned integer type is defined in synopsys.vhd... 
        variable Q: unsigned (3 downto 0); 

    begin 

        if Rst = '1' then 
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            Q := "0000"; 
        elsif rising_edge(Clk) then 
            if Load = '1' then 
                for i in 3 downto 0 loop 
                    Q(i) := Data(i); 
                end loop; 
            elsif Q = "1111" then 
                Q := "0000"; 
            else 
                Q := Q + "0001"; 
            end if; 
        end if; 
        Count <= conv_std_logic_vector(Q,Data'length); 
    end process; 
end COUNT16_A; 

In this example, the conv_std_logic_vector function has been provided in the 
std_logic_arith package, which was supplied by a synthesis vendor (in this case, Synopsys). 

Using synthesis tool-specific packages such as std_logic_arith can be quite convenient, but may result 
in a non-portable design description. (This is particularly true if you use tool-specific type conversion 
functions, which often have completely different naming conventions and function parameters, and are 
typically incompatible with synthesis tools other than those they were originally written for.) 

The best solution is to use the IEEE 1076.3 standard numeric data types. 

Standard logic data types 
This section describes in detail the contents of the IEEE 1164 Standard Logic package std_logic_1164. 
The std_logic_1164 package is compiled into a library named ieee, and includes the following data 
type and function definitions: 

Type Std_ulogic 
Type std_ulogic is intended to represent a single wire that can have various logical (and metalogical) 
values. Std_ulogic is the base type for other IEEE 1164 (and related) standard types, including 
std_logic, std_logic_vector, signed and unsigned. Std_ulogic has the following definition: 

type std_ulogic is ( 'U',  -- Uninitialized 
                     'X',  -- Forcing Unknown 
                     '0',  -- Forcing 0 
                     '1',  -- Forcing 1 
                     'Z',  -- High Impedance    
                     'W',  -- Weak Unknown 
                     'L',  -- Weak 0        
                     'H',  -- Weak 1        
                     '-'   -- Don't care 
                   ); 
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The std_ulogic data type is an enumerated type similar is usage to the bit data type provided in the 
standard (1076) library. Std_ulogic is an unresolved type. 

Type Std_ulogic_vector 
Type std_ulogic_vector is intended to represent a collection of wires, or a bus of arbitrary width. 
Std_ulogic_vector has the following definition: 

type std_ulogic_vector is array ( natural range <> ) of std_ulogic; 

Std_ulogic_vector is an unconstrained array of std_ulogic, and is analogous to the standard type 
bit_vector. 

Type Std_logic 
Type std_logic is a resolved type based on std_ulogic, and has the following definition: 

subtype std_logic is resolved std_ulogic; 

In the case of multiple drivers, the nine values of std_logic are resolved to values as indicated in the 
chart below. 

 U X 0 1 Z W L H - 

U U U U U U U U U U 

X U X X X X X X X X 

0 U X 0 1 0 0 0 0 X 

1 U X X X 1 1 1 1 X 

Z U X 0 1 Z W L H X 

W U X 0 1 W W W W X 

L U X 0 1 L W L W X 

H U X 0 1 H W W H X 

- U X X X X X X X X 

Type Std_logic_vector 
Std_logic_vector is an unconstrained array of std_logic: 

type std_logic_vector is array ( natural range <>) of std_logic; 

Subtypes Based on Std_ulogic 
subtype X01 is resolved std_ulogic range 'X' to '1'; -- ('X','0','1')  

subtype X01Z is resolved std_ulogic range 'X' to 'Z'; -- ('X','0','1','Z')  

subtype UX01 is resolved std_ulogic range 'U' to '1'; -- ('U','X','0','1')  

subtype UX01Z is resolved std_ulogic range 'U' to 'Z'; -- 
('U','X','0','1','Z') 
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The X01, X01Z, UX01, and UX01Z subtypes are used within the std_logic_1164 package to simplify 
various operations on standard logic data, and may also be used when you have a need for 3-, 4-, or 5-
valued logic systems. 

Standard logic operators 
The following operators are defined for types std_ulogic, std_logic, std_ulogic_vector and 
std_logic_vector: 

Logical Operators 

function "and"  ( l : std_ulogic; r : std_ulogic ) return UX01; 

function "nand" ( l : std_ulogic; r : std_ulogic ) return UX01; 

function "or"   ( l : std_ulogic; r : std_ulogic ) return UX01; 

function "nor"  ( l : std_ulogic; r : std_ulogic ) return UX01; 

function "xor"  ( l : std_ulogic; r : std_ulogic ) return UX01; 

function "xnor" ( l : std_ulogic; r : std_ulogic ) return ux01; 

function "not"  ( l : std_ulogic ) return UX01; 

Array Logical Operators 

function "and"  ( l, r : std_logic_vector  ) return std_logic_vector; 

function "and"  ( l, r : std_ulogic_vector ) return std_ulogic_vector; 

function "nand" ( l, r : std_logic_vector  ) return std_logic_vector; 

function "nand" ( l, r : std_ulogic_vector ) return std_ulogic_vector; 

function "or"   ( l, r : std_logic_vector  ) return std_logic_vector; 

function "or"   ( l, r : std_ulogic_vector ) return std_ulogic_vector; 

function "nor"  ( l, r : std_logic_vector  ) return std_logic_vector; 

function "nor"  ( l, r : std_ulogic_vector ) return std_ulogic_vector; 

function "xor"  ( l, r : std_logic_vector  ) return std_logic_vector; 

function "xor"  ( l, r : std_ulogic_vector ) return std_ulogic_vector; 

function "xnor" ( l, r : std_logic_vector  ) return std_logic_vector; 

function "xnor" ( l, r : std_ulogic_vector ) return std_ulogic_vector; 

function "not"  ( l : std_logic_vector  ) return std_logic_vector; 

function "not"  ( l : std_ulogic_vector ) return std_ulogic_vector; 

Standard logic type conversions 
Type Conversions 
The std_logic_1164 package includes a variety of type conversion functions to help convert data 
between 1076 standard data types (bit and bit_vector) and IEEE 1164 standard logic data types: 

function To_bit ( s : std_ulogic;   xmap : bit := '0' ) return bit; 
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function To_bitvector ( s : std_logic_vector ; xmap : bit := '0' ) return 
bit_vector; 
function To_bitvector ( s : std_ulogic_vector; xmap : bit := '0' ) return 
bit_vector; 
function To_StdULogic ( b : bit ) return std_ulogic; 

function To_StdLogicVector ( b : bit_vector ) return std_logic_vector; 

function To_StdLogicVector ( s : std_ulogic_vector ) return 
std_logic_vector; 
function To_StdULogicVector ( b : bit_vector ) return std_ulogic_vector; 

function To_StdULogicVector ( s : std_logic_vector ) return 
std_ulogic_vector; 

Strength Stripping Functions 
The strength stripping functions convert the 9-valued types std_ulogic and std_logic to the 3-, 4-, and 
5-valued types (X01, X01Z, UX01 and UX01Z), converting strength values ('H', 'L', and 'W') to their '0' 
and '1' equivalents. 

function To_X01 ( s : std_logic_vector ) return std_logic_vector; 

function To_X01 ( s : std_ulogic_vector ) return std_ulogic_vector; 

function To_X01 ( s : std_ulogic ) return X01; 

function To_X01 ( b : bit_vector ) return std_logic_vector; 

function To_X01 ( b : bit_vector ) return std_ulogic_vector; 

function To_X01 ( b : bit ) return X01;        

function To_X01Z ( s : std_logic_vector ) return std_logic_vector; 

function To_X01Z ( s : std_ulogic_vector ) return std_ulogic_vector; 

function To_X01Z ( s : std_ulogic ) return X01Z; 

function To_X01Z ( b : bit_vector ) return std_logic_vector; 

function To_X01Z ( b : bit_vector ) return std_ulogic_vector; 

function To_X01Z ( b : bit ) return X01Z;       

function To_UX01 ( s : std_logic_vector ) return std_logic_vector; 

function To_UX01 ( s : std_ulogic_vector ) return std_ulogic_vector; 

function To_UX01 ( s : std_ulogic ) return UX01; 

function To_UX01 ( b : bit_vector ) return std_logic_vector; 

function To_UX01 ( b : bit_vector ) return std_ulogic_vector; 

function To_UX01 ( b : bit ) return UX01; 
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Edge detection and other functions 
Edge Detection Functions 
The edge detection functions rising_edge() and falling_edge() provide a concise, portable way to 
describe the behavior of an edge-triggered device such as a flip-flop: 

function rising_edge (signal s : std_ulogic) return boolean; 

function falling_edge (signal s : std_ulogic) return boolean; 

Miscellaneous Checking Functions 
The following functions can be used to determine if an object or literal is a don't-care, which, for this 
purpose, is defined as any of the five values 'U', 'X', 'Z', 'W' or '-': 

function Is_X ( s : std_ulogic_vector ) return  boolean; 

function Is_X ( s : std_logic_vector ) return  boolean; 

function Is_X ( s : std_ulogic ) return  boolean; 

Standard 1076.3 
IEEE Standard 1076.3 (the numeric standard) was developed to help synthesis tool users and vendors 
by providing standard, portable data types and operations for numeric data, and by providing more 
clearly defined meaning for the nine values of the IEEE 1164 std_ulogic and std_logic data types. 

IEEE Standard 1076.3 defines the package numeric_std that allows the use of arithmetic operations on 
standard logic (std_logic and std_logic_vector) data types. (The 1076.3 standard also defines 
arithmetic forms of the bit and bit_vector data types in a package named numeric_bit, but this 
alternative package is not described here.) 

The numeric_std package defines the numeric types signed and unsigned and corresponding 
arithmetic operations and functions based on the std_logic (resolved) data type. The package was 
designed for use with synthesis tools, and therefore includes additional functions (such as std_match) 
that simplify the use of don't-cares. 

There are two numeric data types, unsigned and signed, declared in the numeric_std package, as 
shown below: 

type unsigned is array (natural range <>) of std_logic; 

type signed is array (natural range <>) of std_logic; 

Unsigned represents unsigned integer data in the form of an array of std_logic elements. Signed 
represents signed integer data. 

Notes 

In signed or unsigned arrays, the leftmost bit is treated as the most significant bit. Signed integers are 
represented in the signed array in two's complement form. 
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Using numeric data types 
There are many different applications of the IEEE 1076.3 numeric data types, operators and functions. 
The following example demonstrates how the unsigned type might be used to simplify the description 
of a counter: 

-- COUNT16: 4-bit counter. 

-- 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

entity COUNT16 is 

    port (Clk,Rst,Load: in std_logic; 

          Data: in std_logic_vector (3 downto 0); 

          Count: out std_logic_vector (3 downto 0) 

    ); 
end COUNT16; 

architecture COUNT16_A of COUNT16 is 

    signal Q: unsigned (3 downto 0); 

    constant MAXCOUNT: unsigned (3 downto 0) := "1111"; 

begin 

    process(Rst,Clk) 

    begin 

        if Rst = '1' then 

            Q <= (others => '0'); 

        elsif rising_edge(Clk) then 

            if Load = '1' then 

                Q <= UNSIGNED(Data); -- Type conversion 
            elsif Q = MAXCOUNT then 

                Q <= (others => '0'); 

            else 

                Q <= Q + 1; 
            end if; 

        end if; 

        Count <= STD_LOGIC_VECTOR(Q); -- Type conversion 
    end process; 

end COUNT16_A; 
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In this example, the type unsigned is used within the architecture to represent the counter data. The 
add operation ('+') is defined for type unsigned by the 1076-3 standard (in library numeric_std) so the 
counter can be easily described. Because the unsigned and std_logic_vector data types share the 
same element type (std_logic), conversion between these types is straightforward, as shown. 

Numeric standard operators 

Arithmetic operators 
function "abs" (ARG: signed) return signed; 

function "-" (ARG: signed) return signed; 

function "+" (L, R: unsigned) return unsigned; 

function "+" (L, R: signed) return signed; 

function "+" (L: unsigned; R: natural) return unsigned; 

function "+" (L: natural; R: unsigned) return unsigned; 

function "+" (L: integer; R: signed) return signed; 

function "+" (L: signed; R: integer) return signed; 

function "-" (L, R: unsigned) return unsigned; 

function "-" (L, R: signed) return signed; 

function "-" (L: unsigned;R: natural) return unsigned; 

function "-" (L: natural; R: unsigned) return unsigned; 

function "-" (L: signed; R: integer) return signed; 

function "-" (L: integer; R: signed) return signed; 

function "*" (L, R: unsigned) return unsigned; 

function "*" (L, R: signed) return signed; 

function "*" (L: unsigned; R: natural) return unsigned; 

function "*" (L: natural; R: unsigned) return unsigned; 

function "*" (L: signed; R: integer) return signed; 

function "*" (L: integer; R: signed) return signed; 

function "/" (L, R: unsigned) return unsigned; 

function "/" (L, R: signed) return signed; 

function "/" (L: unsigned; R: natural) return unsigned; 

function "/" (L: natural; R: unsigned) return unsigned; 

function "/" (L: signed; R: integer) return signed; 

function "/" (L: integer; R: signed) return signed; 

function "rem" (L, R: unsigned) return unsigned; 

function "rem" (L, R: signed) return signed; 

function "rem" (L: unsigned; R: natural) return unsigned; 

function "rem" (L: natural; R: unsigned) return unsigned; 
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function "rem" (L: signed; R: integer) return signed; 

function "rem" (L: integer; R: signed) return signed; 

function "mod" (L, R: unsigned) return unsigned; 

function "mod" (L, R: signed) return signed; 

function "mod" (L: unsigned; R: natural) return unsigned; 

function "mod" (L: natural; R: unsigned) return unsigned; 

function "mod" (L: signed; R: integer) return signed; 

function "mod" (L: integer; R: signed) return signed; 

Numeric logical operators 
function "not" (L: unsigned) return unsigned; 

function "and" (L, R: unsigned) return unsigned; 

function "or" (L, R: unsigned) return unsigned; 

function "nand" (L, R: unsigned) return unsigned; 

function "nor" (L, R: unsigned) return unsigned; 

function "xor" (L, R: unsigned) return unsigned; 

function "xnor" (L, R: unsigned) return unsigned; 

function "not" (L: signed) return signed; 

function "and" (L, R: signed) return signed; 

function "or" (L, R: signed) return signed; 

function "nand" (L, R: signed) return signed; 

function "nor" (L, R: signed) return signed; 

function "xor" (L, R: signed) return signed; 

function "xnor" (L, R: signed) return signed; 

Relational operators 
function ">" (L, R: unsigned) return boolean; 

function ">" (L, R: signed) return boolean; 

function ">" (L: natural; R: unsigned) return boolean; 

function ">" (L: integer; R: signed) return boolean; 

function ">" (L: unsigned; R: natural) return boolean; 

function ">" (L: signed; R: integer) return boolean; 

function "<" (L, R: unsigned) return boolean; 

function "<" (L, R: signed) return boolean; 

function "<" (L: natural; R: unsigned) return boolean; 

function "<" (L: integer; R: signed) return boolean; 

function "<" (L: unsigned; R: natural) return boolean; 

function "<" (L: signed; R: integer) return boolean; 
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function "<=" (L, R: unsigned) return boolean; 

function "<=" (L, R: signed) return boolean; 

function "<=" (L: natural; R: unsigned) return boolean; 

function "<=" (L: integer; R: signed) return boolean; 

function "<=" (L: unsigned; R: natural) return boolean; 

function "<=" (L: signed; R: integer) return boolean; 

function ">=" (L, R: unsigned) return boolean; 

function ">=" (L, R: signed) return boolean; 

function ">=" (L: natural; R: unsigned) return boolean; 

function ">=" (L: integer; R: signed) return boolean; 

function ">=" (L: unsigned; R: natural) return boolean; 

function ">=" (L: signed; R: integer) return boolean; 

function "=" (L, R: unsigned) return boolean; 

function "=" (L, R: signed) return boolean; 

function "=" (L: natural; R: unsigned) return boolean; 

function "=" (L: integer; R: signed) return boolean; 

function "=" (L: unsigned; R: natural) return boolean; 

function "=" (L: signed; R: integer) return boolean; 

function "/=" (L, R: unsigned) return boolean; 

function "/=" (L, R: signed) return boolean; 

function "/=" (L: natural; R: unsigned) return boolean; 

function "/=" (L: integer; R: signed) return boolean; 

function "/=" (L: unsigned; R: natural) return boolean; 

function "/=" (L: signed; R: integer) return boolean; 

Shift and rotate functions 
function shift_left (ARG: unsigned; COUNT: natural) return unsigned; 

function shift_right (ARG: unsigned; COUNT: natural) return unsigned; 

function shift_left (ARG: signed; COUNT: natural) return signed; 

function shift_right (ARG: signed; COUNT: natural) return signed; 

function rotate_left (ARG: unsigned; COUNT: natural) return unsigned; 

function rotate_right (ARG: unsigned; COUNT: natural) return unsigned; 

function rotate_left (ARG: signed; COUNT: natural) return signed; 

function rotate_right (ARG: signed; COUNT: natural) return signed; 

function "sll" (ARG: unsigned; COUNT: integer) return unsigned; 

function "sll" (ARG: signed; COUNT: integer) return signed; 

function "srl" (ARG: unsigned; COUNT: integer) return unsigned; 
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function "srl" (ARG: signed; COUNT: integer) return signed; 
function "rol" (ARG: unsigned; COUNT: integer) return unsigned; 
function "rol" (ARG: signed; COUNT: integer) return signed; 
function "ror" (ARG: unsigned; COUNT: integer) return unsigned; 
function "ror" (ARG: signed; COUNT: integer) return signed; 

Numeric resize functions 
The resize functions are used to convert a fixed-sized signed or unsigned array to a new (larger or 
smaller) size. If the resulting array is larger than the input array, the result is padded with '0's. In the 
case of a signed array, the sign bit is extended to the least significant bit. 

function resize (ARG: signed; NEW_SIZE: natural) return signed; 
function resize (ARG: unsigned; NEW_SIZE: natural) return unsigned; 
Numeric type conversion functions 
The numeric type conversion functions are used to convert between integer data types and signed and 
unsigned data types. 

function to_integer (ARG: unsigned) return natural; 

function to_integer (ARG: signed) return integer; 

function to_unsigned (ARG, SIZE: natural) return unsigned; 

function to_signed (ARG: integer; SIZE: natural) return signed; 
Numeric matching functions 
The matching functions (std_match) are used to determine if two values of type std_logic are logically 
equivalent, taking into consideration the semantic values of the 'X' (uninitialized) and '-' (don't-care) 
literal values. The following table (derived from the match_table constant declaration found in the 
numeric_std package) defines the matching of all possible combinations of the std_logic enumerated 
values: 

 U X 0 1 Z W L H - 

U F F F F F F F F T 

X F F F F F F F F T 

0 F F T F F F T F T 

1 F F F T F F F T T 

Z F F F F F F F F T 

W F F F F F F F F T 

L F F T F F F T F T 

H F F F T F F F T T 

- T T T T T T T T T 
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function std_match (L, R: STD_ULOGIC) return boolean; 

function std_match (L, R: unsigned) return boolean; 

function std_match (L, R: signed) return boolean; 

function std_match (L, R: std_logic_vector) return boolean; 

function std_match (L, R: STD_ULOGIC_vector) return boolean; 

Numeric translation functions 
The numeric translation functions convert the nine std_logic values to numeric binary values ('0' or '1') 
for use in signed and unsigned arithmetic operations. These translation functions convert the values of 
'L' and 'H' to '0' and '1', respectively. Any other values ('U', 'X', 'Z', '-', or 'W') result in a warning error 
(assertion) being generated. 

function to_01 (S: unsigned; XMAP: std_logic := '0') return unsigned; 

function to_01 (S: signed; XMAP: std_logic := '0') return signed; 
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Concurrent Statements 
The following links are to more detailed topics within the area of concurrent statements. These include 
a look at the concept of concurrency as it is implemented in the VHDL language and in VHDL 
simulators; an exploration of some of the concurrent language features of VHDL in more detail and 
how combinational and registered logic can be described using these features; a look at how timing 
delays are annotated to concurrent assignments in VHDL, so you will have a better understanding of 
how simulation models are constructed. 

The concurrent area 
In VHDL, there is only one place where you will normally enter concurrent statements. This place, the 
concurrent area, is found between the begin and end statements of an architecture declaration. The 
following VHDL example shows where the concurrent area of a VHDL architecture is located: 

architecture arch1 of my_circuit is 

    signal Reset, DivClk: std_logic; 

    constant MaxCount: std_logic_vector(15 downto 0) := "10001111"; 

    component count port (Clk, Rst: in std_logic; 

                                         Q: out std_logic_vector(15 downto 
0)); 
begin 

    Reset <= '1' when Qout  = MaxCount else '0'; 

    CNT1: count port map(GClk, Reset, DivClk); 

    Control: process(DivClk) 

    begin 

        . . . 
    end process;  

     . . . 
end arch1; 

All statements within the concurrent area are considered to be parallel in their execution and of equal 
priority and importance. Processes also obey this rule, executing in parallel with other assignments and 
processes appearing in the concurrent area.  

There is no order dependency to statements in the concurrent area, so the following architecture 
declaration: 

architecture arch1 of my_circuit is 

    signal A, B, C: std_logic_vector(7 downto 0); 

    constant Init: std_logic_vector(7 downto 0) := "01010101"; 

begin 

    A <= B and C; 

    B <= Init when Select = '1' else C; 
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    C <= A and B; 

end arch1; 

is exactly equivalent to: 

architecture arch2 of my_circuit is 

    signal A, B, C: std_logic_vector(7 downto 0); 

    constant Init: std_logic_vector(7 downto 0) := "01010101"; 

begin 

    C <= A and B; 

    A <= B and C; 

    B <= Init when Select = '1' else C; 

end arch2; 

The easiest way to understand this concept of concurrency is to think of concurrent VHDL statements 
as a kind of netlist, in which the various assignments being made are nothing more than connections 
between different types of objects. 

If you think of the signals, constants, components, literals – and even processes – available in 
concurrent VHDL statements as distinct objects (such as you might find on a schematic or block 
diagram), and think of operations (such as and, not, and when-else) and assignments as logic gates 
and wiring specifications, respectively, then you will have no trouble understanding how VHDL's 
concurrent statements can be mapped to actual digital logic. 

Concurrent signal assignments 
The most common and simple concurrent statements you will write in VHDL are concurrent signal 
assignments. Concurrent signal assignments specify the logical relationships between different signals 
in a digital system. 

If you have used PLD-oriented design languages (such as PALASM, ABEL, CUPL or Altera's AHDL), 
then concurrent signal assignments will be quite familiar to you. Just like the Boolean equations that 
you write using a PLD language, concurrent signal assignments in VHDL describe logic that is 
inherently parallel. 

Because all signal assignments in your design description are concurrent, there is no relevance to the 
order in which the assignments are made within the concurrent area of the architecture. 

In most cases, you will use concurrent signal assignments to describe either combinational logic (using 
logic expressions of arbitrary complexity), or you will use them to describe the connections between 
lower-level components. In some cases (though not typically for designs that will be synthesized) you 
will use concurrent signal assignments to describe registered logic as well. 

The following example includes two simple concurrent signal assignments that represent NAND and 
NOR operations: 

architecture arch3 of nand_circuit is 

    signal A, B: std_logic; 

    signal Y1, Y2: std_logic; 
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begin 

    Y1 <= not (A and B); 

    Y2 <= not (A or B); 

end arch3; 

In this example, there is no significance to the order in which the two assignments have been made. 
Also, keep in mind that the two signals being assigned (Y1 and Y2) could just as easily have been 
ports of the entity rather than signals declared in the architecture. In all cases, signals declared locally 
(within an architecture, for example) can be used in exactly the same ways as can ports of the 
corresponding entity. The only difference between ports and locally-declared signals is that ports have 
a direction, or mode (in, out or inout), limiting whether they can have values assigned to them (in the 
case of in), or whether they can be read as inputs (in the case of out). If a port is declared as mode 
out, its value cannot be read. It can only be assigned a value. A port of mode in is the opposite; it can 
be read, but it cannot be assigned a value. A port of mode inout has both capabilities. 

Conditional signal assignment 
A conditional signal assignment is a special form of signal assignment, similar to the if-then-else 
statements found in software programming languages, that allows you to describe a sequence of 
related conditions under which one or more signals are assigned values. The following example (a 
simple multiplexer) demonstrates the basic form of a conditional assignment: 

entity my_mux is 

    port (Sel: in std_logic_vector (0 to 1); 

             A, B, C, D: in std_logic_vector (0 to 3); 

             Y: out std_logic_vector (0 to 3)); 

end my_mux; 

architecture mux1 of my_mux is 

begin 

    Y <= A when Sel = "00" else  

             B when Sel = "01" else 

             C when Sel = "10" else 

             D when others; 

end mux1; 

A conditional signal assignment consists of an assignment to one output (or a collection of outputs, 
such as an array of any type) and a series of conditional when statements, as shown. To ensure that 
all conditions are covered, you can use a terminating when others clause, as was done for the 
multiplexer description above. 

The conditional signal assignment also provides a concise method of describing a list of conditions that 
have some priority. In the case of the multiplexer just described, there is no priority required or 
specified, since the four conditions (the possible values of the 2-bit input Sel) are all mutually 
exclusive. In some design descriptions, however, the priority implied by a series of when-else 
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statements can cause some confusion (and additional logic being generated). For this reason, you 
might want to use a selected signal assignment as an alternative. 

Notes 
It is very important that all conditions in a conditional assignment are covered, as unwanted latches can 
be easily generated from synthesis for those conditions that are not covered. In the preceding 
multiplexer example, you might be tempted to replace the clause D when others with D when Sel 
= "11" (to improve readability). This would not be correct, however, because the data type being 
used in the design (std_logic_vector) has nine possible values for each bit. This means that there are 
actually 81 possible unique values that the input Sel could have at any given time, rather than four. 

Selected signal assignment 
A selected signal assignment is similar to a conditional signal assignment but differs in that the input 
conditions specified have no implied priority. The following is an example of a selected signal 
assignment: 

entity my_mux is 

    port (Sel: in std_logic_vector (0 to 1); 

             A, B, C, D: in std_logic_vector (0 to 3); 

             Y: out std_logic_vector (0 to 3)); 

end my_mux; 

architecture mux1 of my_mux is 

begin 

    with Sel select 

        Y <= A when "00", 

             B when "01", 

             C when “10", 

             D when others; 

end mux1; 

In this simple multiplexer example, the selected signal assignment has exactly the same function as 
the conditional signal assignment presented earlier. This is not always the case, however, and you 
should carefully evaluate which type of assignment is most appropriate for a given application. 

Conditional vs. Selected signal assignment 
How to choose between a conditional assignment and a selected assignment?  Consider this: a 
conditional assignment always enforces a priority on the conditions. For example, the conditional 
expression: 

Q1 <= "01" when A = '1' else 

          "10" when B = '1' else 

          "11" when C = '1' else 

          "00"; 
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is identical to the selected assignment: 

with std_logic_vector'(A,B,C) select 

     Q2 <= "01" when "100", 

                 "01" when "101", 

                 "01" when "110", 

                 "01" when "111", 

                 "10" when "010", 

                 "10" when "011", 

                 "11" when "001", 

                 "00" when others; 

Notice that input A takes priority. In the conditional assignment, that priority is implied by the ordering of 
the expressions. In the selected assignment, you must specify all possible conditions, so there can be 
no priority implied. 

Why is this important for synthesis? Consider a circuit in which you know in advance that only one of 
the three inputs (A, B, or C) could ever be active at the same time. Or perhaps you don't care what the 
output of your circuit is under the condition where more than one input is active. In such cases, you can 
reduce the amount of logic required for your design by eliminating the priority implied by the conditional 
expression. You could instead write your description as: 

with std_logic_vector'(A,B,C) select 

         Q2 <= "01" when "100", 

                     "10" when "010", 

                     "11" when "001", 

                     "00" when others; 

This version of the description will, in all likelihood, require less logic to implement than the earlier 
version. This kind of optimization can save dramatic amounts of logic in larger designs. 

In summary, while a conditional assignment may be more natural to write, a selected signal 
assignment may be preferable to avoid introducing additional, unwanted logic in your circuit. 

Notes 
You must include all possible conditions in a selected assignment. If not all conditions are easily 
specified, you can use the others clause as shown above to provide a default assignment. 

 
The selection expressions may include ranges and multiple values. For example, you could specify 
ranges for a bit_vector selection expression as follows: 

with Address select 
      CS <= SRAM when 0x"0000" to 0x"7FFF",                          
            PORT when 0x"8000" to 0x"81FF", 
            UART when 0x"8200" to 0x"83FF", 
            PROM when others; 
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VHDL `93 adds the following feature to the selected signal assignment: You can use the keyword 
unaffected to specify that the output does not change under one or more conditions. For example, a 
multiplexer with two selector inputs could be described as: 

with Sel select 

        Y <= A when "00", 

             B when "01", 

             C when "10", 

             unaffected when others; 

The preceding multiplexer description may result in a latch being generated from synthesis. This is 
because the synthesized circuit will have to maintain the value of the output Y when the value of input 
Sel is "11". 

Procedure calls 
Procedures may be called concurrently within an architecture. When procedures are called 
concurrently, they must appear as independent statements within the concurrent area of the 
architecture. 

You can think of procedures in the same way you think of processes within an architecture: as 
independent sequential programs that execute whenever there is a change (an event) on any of their 
inputs. The advantage of a procedure over a process is that the body of the procedure (its sequential 
statements) can be kept elsewhere (in a package, for example) and used repeatedly throughout the 
design. 
In the following example, the procedure dff is called within the concurrent area of the architecture: 

architecture shift2 of shift is 

    signal D,Qreg: std_logic_vector(0 to 7); 

begin 

    D <= Data when (Load = '1') else 

                  Qreg(1 to 7) & Qreg(0); 

    dff(Rst, Clk, D, Qreg); 

    Q <= Qreg; 
end shift2; 

Generate statements 
Generate statements are provided as a convenient way to create multiple instances of concurrent 
statements, most typically component instantiation statements. There are two basic varieties of 
generate statements. 

The for-generate statement 
The following example shows how you might use a for-generate statement to create four instances of 
a lower-level component (in this case a RAM block): 
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architecture generate_example of my_entity is 

    component RAM16X1 

        port(A0, A1, A2, A3, WE, D: in std_logic; 

                O: out std_logic); 

    end component; 

begin 

    . . . 
    RAMGEN: for i in 0 to 3 generate 

        RAM: RAM16X1 port map ( . . . ); 

    end generate; 

    . . . 
end generate_example; 

When this generate statement is evaluated, the VHDL compiler will generate four unique instances of 
component RAM16X1. Each instance will have a unique name that is based on the instance label 
provided (in this case RAM) and the index value. 

For-generate statements can be nested, so it is possible to generate multi-dimensional arrays of 
component instances or other concurrent statements. 

The if-generate statement 
The if-generate statement is most useful when you need to conditionally generate a concurrent 
statement. A typical example of this occurs when you are generating a series of repetitive statements 
or components and need to supply different parameters, or generate different components, at the 
beginning or end of the series. The following example shows how a combination of a for-generate 
statement and three if-generate statements can be used to describe a 10-bit parity generator 
constructed of cascaded exclusive-OR gates: 

library ieee; 

use ieee.std_logic_1164.all; 

entity parity10 is 

    port(D: in std_logic_vector(0 to 9); 

            ODD: out std_logic); 

    constant width: integer := 10; 

end parity10; 

library gates; 

use gates.all; 

architecture structure of parity10 is 

    component xor2 

        port(A,B: in std_logic; 

             Y: out std_logic); 
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    end component; 

    signal p: std_logic_vector(0 to width - 2); 

begin 

    G: for I in 0 to (width - 2) generate 

        G0: if I = 0 generate 

             X0: xor2 port map(A => D(0), B => D(1), Y => p(0)); 

        end generate G0; 

        G1: if I > 0 and I < (width - 2) generate 

             X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i)); 

        end generate G1; 

        G2: if I = (width - 2) generate 

             X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD); 

        end generate G2; 

    end generate G; 

end structure; 

Concurrent processes 
Process statements contain sequential statements but are themselves concurrent statements within 
an architecture. In most VHDL design descriptions, there are multiple processes that execute 
concurrently during simulation and describe hardware that is inherently concurrent in its operation. 

In the following example, two processes are used to describe a background clock (process CLOCK) 
and a sequence of stimulus inputs in a test bench: 

architecture Stim1 of TEST_COUNT4EN is 

component COUNT4EN 

    port ( CLK,RESET,EN : in  std_logic; 

           COUNT : out std_logic_vector(3 downto 0) 

    ); 
end component; 

constant CLK_CYCLE : Time := 20 ns; 

signal CLK,INIT_RESET,EN : std_logic; 

signal COUNT_OUT : std_logic_vector(3 downto 0); 

begin 

   U0: COUNT4EN port map ( CLK=>CLK,RESET=>INIT_RESET, 

                           EN=>EN, COUNT=>COUNT_OUT); 
   process begin 

      CLK <= '1'; 
      wait for CLK_CYCLE/2; 
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      CLK <= '0'; 
      wait for CLK_CYCLE/2; 

   end process; 

   process begin 

      INIT_RESET <= '0'; EN <= '1'; 
      wait for  CLK_CYCLE/3; 

      INIT_RESET <= '1'; 
      wait for  CLK_CYCLE; 

      INIT_RESET <= '0'; 
      wait for  CLK_CYCLE*10; 

      EN <= '0'; 
      wait for  CLK_CYCLE*3; 

      EN <= '1'; 
      wait; 

   end process; 

end Stim1; 

The inter-relationships between multiple processes in a design description can be complex. For the 
purpose of understanding concurrency however, you must never assume that any process you write 
will be executed in simulation prior to any other process. This means that you cannot count on signals 
or shared variables being updated between two processes. 

Component instantiations 
Component instantiations are statements that reference lower-level components in your design, in 
essence creating unique copies (or instances) of those components. A component instantiation 
statement is a concurrent statement, so there is no significance to the order in which components are 
referenced. You must, however, declare any components that you reference in either the declarative 
area of the architecture (before the begin statement) or in an external package that is visible to the 
architecture. 

The following example demonstrates how component instantiations can be written. In this example, 
there are two lower-level components (half_adder and full_adder) that are referenced in 
component instantiations to create a total of four component instances. When simulated or 
synthesized, the four component instances (A0, A1, A2 and A3) will be processed as four independent 
circuit elements. In this example, the two lower-level components half_adder and full_adder 
have been declared, right in the architecture. To make your design descriptions more concise, you may 
choose to place component declarations in separate packages instead. 

library ieee; 

use ieee.std_logic_1164.all; 

entity adder4 is 

    port(A,B: in std_logic_vector(3 downto 0); 
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            S: out std_logic_vector(3 downto 0); 

            Cout: out std_logic); 

end adder4; 

architecture structure of adder4 is 

    component half_adder 

         port (A, B: in std_logic; Sum, Carry: out std_logic); 

    end component; 

    component full_adder 

         port (A, B, Cin: in std_logic; Sum, Carry: out std_logic); 

    end component; 

    signal C: std_logic_vector(0 to 2); 

begin 

    A0: half_adder port map(A(0), B(0),         S(0), C(0)); 

    A1: full_adder port map(A(1), B(1), C(0), S(1), C(1)); 

    A2: full_adder port map(A(2), B(2), C(1), S(2), C(2)); 

    A3: full_adder port map(A(3), B(3), C(2), S(3), Cout); 

end structure; 

Port and generic mapping 
The mapping of ports in a component can be described in one of two ways. The simplest method is 
called positional association. Positional association simply maps signals in the architecture (the 
actuals) to corresponding ports in the lower-level entity declaration (the formals) by their position in the 
port list. When using positional association, you must provide exactly the same number and types of 
ports as are declared for the lower-level entity. 

Positional association is quick and easy to use, and it is tempting to use this method almost 
exclusively. However, there are potential problems with positional association. The most troublesome 
problem is the lack of error checking. It is quite easy, for example, to inadvertently reverse the order of 
two ports in the list. The result is a circuit that may compile with no errors, but fail to simulate properly. 
After the first few times you accidentally swap the reset and clock lines to one of your lower-level 
components, you may decide that it is worth the extra typing to provide a more complete specification 
of your port mappings. The method you will use in this case is called named association. 

Named association is an alternate form of port mapping that includes both the actual and formal port 
names in the port map of a component instantiation. (Named association can also be used in other 
places, such as in the parameter lists for generics and subprograms.) 

An example using named association, for a 4-bit adder, is as follows: 

architecture structure of adder4 is 

  component half_adder 

       port (A, B: in std_logic; Sum, Carry: out std_logic); 

  end component; 
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  component full_adder 

       port (A, B, Cin: in std_logic; Sum, Carry: out std_logic); 

  end component; 

  signal C: std_logic_vector(0 to 2); 

begin 

  A0: half_adder port map(A => A(0), B => B(0), Sum => S(0), Carry => C(0)); 

  A1: full_adder port map(A => A(1), B => B(1), Cin => C(0), Sum => S(1), 
Carry => C(1)); 
  A2: full_adder port map(A => A(2), B => B(2), Cin => C(1), Sum => S(2), 
Carry => C(2)); 
  A3: full_adder port map(A => A(3), B => B(3), Cin => C(2), Sum => S(3), 
Carry => Cout); 
end structure; 

When you specify port mappings using named association, lower-level names (the formal ports of the 
component) are written on the left side of the => operator, while the top-level names (the actuals) are 
written on the right. 

The benefits of named association go beyond simple error checking. Because named association 
removes the requirement for any particular order of the ports, you can enter them in whatever order 
you want. You can even leave one or more ports unconnected if you have provided default values in 
the lower-level component specification. 

Because named association is so much more flexible (and less error prone) than positional 
association, it is strongly recommend that you get in the habit of typing in the few extra characters 
required to use named association. 

Generic Mapping 
If the lower-level entity being referenced includes generics, you can specify a generic map in addition 
to the port map to pass actual generic parameters to the lower-level entity: 

architecture timing of adder4 is 

  component half_adder 

       port (A, B: in std_logic; Sum, Carry: out std_logic); 

  end component; 

  component full_adder 

       port (A, B, Cin: in std_logic; Sum, Carry: out std_logic); 

  end component; 

  signal C: std_logic_vector(0 to 2); 

begin 

  A0: half_adder 
          generic map(tRise => 1 ns, tFall => 1 ns); 

          port map(A => A(0), B => B(0), Sum => S(0), Carry => C(0)); 
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  A1: full_adder 
          generic map(tRise => 1 ns, tFall => 1 ns); 

          port map(A => A(1), B => B(1), Cin => C(0), Sum => S(1), Carry => 
C(1)); 

  A2: full_adder 
          generic map(tRise => 1 ns, tFall => 1 ns); 

          port map(A => A(2), B => B(2), Cin => C(1), Sum => S(2), Carry => 
C(2)); 

  A3: full_adder 
          generic map(tRise => 1 ns, tFall => 1 ns); 

          port map(A => A(3), B => B(3), Cin => C(2), Sum => S(3), Carry => 
Cout); 
end timing; 

Just as with port maps, generic maps can be written using either positional or named association. 

Notes 
The rules of VHDL allow you to mix positional and named association in the same port, generic or 
parameter list.  Doing so has little or no benefit however, and it may confuse other potential users of 
your design description. 

Delay specifications 
VHDL allows signal assignments to include delay specifications, in the form of an after clause. The 
after clause allows you to model the behavior of gate and wire delays in a circuit. This is very useful if 
you are developing simulation models or if you want to include estimated delays in your synthesizable 
design description. The following are two examples of delay specifications associated with signal 
assignments: 

Y1 <= not (A and B) after 7 ns; 

Y2 <= not (A and B) transport after 7 ns; 

These two assignments demonstrate the two fundamental types of delay specifications available in 
VHDL: inertial and transport. 

Inertial delay is intended to model the delay through a gate, in which there is some minimum pulse 
length that must be maintained before an event is propagated. 

Transport delay, on the other hand, models the delay on a wire, so pulses of any width are propagated. 

For design descriptions intended for synthesis, you will probably not bother to use delay specifications 
such as these. A circuit produced as a result of synthesis is unlikely to have timing characteristics that 
can be accurately predicted (or specified) up front.  In fact, all synthesis tools in use as of this writing 
ignore the after clause completely. (If you have a general idea of the timing characteristics of your 
synthesis target – be it an FPGA chip or a high-complexity ASIC – you can use delay specifications to 
improve the accuracy of your initial simulation. Just be aware that anything you annotate prior to 
synthesis will be little more than a guess.) 



VHDL Language Reference 

80 TR0114 (v1.1) May 20, 2005 

When you are writing test benches, you will also probably not use after clauses to specify timing of 
input events. Instead, you will likely rely on a series of wait statements entered within a process to 
accurately specify your test stimulus. 
The IEEE 1076-1993 standard added an additional feature called a reject time. For inertial delays (the 
default delay type if transport is not specified), a minimum inertial pulse time can be specified as 
follows: 

Y1 <= reject 3 ns not (A and B) after 7 ns; 

In this example, any event greater than 3 ns in width will be propagated to the output. In the absence 
of a specified reject time, the specified delay time (in this case 7 ns) is used as the default reject time. 

Signal drivers 
VHDL includes an elaborate set of rules and language features to resolve situations in which the same 
signal is driven to multiple values simultaneously. These situations can be caused unintentionally (by 
an incomplete or incorrect design specification), or they may represent a desired circuit condition, such 
as a three-state driver connected to a bus, or they may represent a simple output enable used in a 
loadable bi-directional register. 

To handle such situations, VHDL introduces the concept of a signal driver. A signal driver is a 
conceptual circuit that is created for every signal assignment in your circuit. By default, this conceptual 
circuit provides a comparison function to ensure that only one driver is active at any given time. The 
following architecture demonstrates a circuit description that does not meet this requirement: 

architecture arch4 of nand_circuit is 

    signal Sel, A, B: std_logic; 

    signal Y: std_logic; 

begin 

    Y <= not (A and B) and Sel; 

    Y <= not (A or B) and not Sel; 

end arch4; 

The intent of this circuit is to provide a single output (Y) that functions either as a NAND gate or as a 
NOR gate based on the value of Sel. Unfortunately, each of the two assignments results in a driver 
being created, resulting in a multiple-driver situation. 
The solution to this, of course, is to completely specify the output Y using only one signal assignment, 
as in the following: 

architecture arch4 of nand_circuit is 

    signal Sel, A, B: std_logic; 
    signal Y,Y1,Y2: std_logic; 
begin 
    Y1 <= not (A and B); 
    Y2 <= not (A or B); 
    Y <= Y1 and Sel or Y2 and not Sel; 
end arch4; 
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In this example, two intermediate signals have been introduced (Y1 and Y2) and the output Y has been 
more completely described as a function of these two values. Another method might be to simply 
combine the three assignments into a larger combinational expression 

(not (A and B) and Sel or not (A or B) and not Sel 

or to use a more concise statement such as a conditional assignment: 

architecture arch5 of nand_circuit is 

    signal Sel, A, B: std_logic; 

    signal Y,Y1,Y2: std_logic; 

begin 

    Y <= not (A and B) when Sel = '1' else 

            not (A or B); 

end arch5; 

Of course, these simple examples only show how you might resolve multiple driver situations that have 
been inadvertently created. You will find that VHDL's signal driver rules can actually help to detect and 
correct errors in your design that might otherwise go unnoticed. For situations that are intentional, 
however, how can you get around the rules?  The answer is a feature of VHDL called a resolution 
function. A resolution function is a special type of function that you (or someone else, such as the IEEE 
committee that defined the resolved type std_logic) can write to resolve multiple-driver situations for a 
specific type. For example, the resolution function for a four-value data type consisting of the values '1', 
'0', 'X' (unknown) and 'Z' (high impedance) might have a resolution function that specifies: 

• that simultaneous values of '1' and '0' appearing on a signal's drivers will result in an 'X' value,  

• that both 'Z' and 'X' can be over-ridden by values of '1' or '0', and  

• that 'Z' is over-ridden by 'X'. 

For most design descriptions and test benches, you will not need to use resolved types such as these. 
(In many synthesis tools, resolution functions are not supported anyway. They serve only to let the 
compiler know whether multiple drivers are allowed for an output.) 
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Sequential Statements 
Sequential VHDL statements allow you to describe the operation, or behavior, of your circuit as a 
sequence of related events. Such descriptions are natural for order-dependent circuits such as state 
machines and for complex combinational logic that involves some priority of operations. The use of 
sequential statements to describe combinational logic implies that the use of the term sequential in 
VHDL is somewhat different from the term as it is often used to describe digital logic. Specifically, 
sequential statements written in VHDL do not necessarily represent sequential digital logic circuits. It is 
possible (and quite common) to write sequential VHDL statements, using processes and subprograms, 
to describe what is essentially combinational logic. 

Sequential statements are found within processes, functions, and procedures. Sequential statements 
differ from concurrent statements in that they have order dependency. This order dependency may or 
may not imply a sequential circuit (one involving memory elements). 

The Process statement 
VHDL's process statement is the primary way you will enter sequential statements. A process 
statement, including all declarations and sequential statements within it, is actually considered to be a 
single concurrent statement within a VHDL architecture. This means that you can write as many 
processes and other concurrent statements as are necessary to describe your design, without worrying 
about the order in which the simulator will process each concurrent statement. 

Anatomy of a Process 

The general form of a process statement is: 

process_name: process (sensitivity_list) 

    declarations 
begin 

    sequential_statements 
end process; 

The easiest way to think of a VHDL process is to relate it to event-driven software – like a program that 
executes (in simulation) any time there is an event on one of its inputs (as specified in the sensitivity 
list). A process describes the sequential execution of statements that are dependent on one or more 
events having occurred. A flip-flop is a perfect example of such a situation. It remains idle, not 
changing state, until there is a significant event (either a rising edge on the clock input or an 
asynchronous reset event) that causes it to operate and potentially change its state. 

Although there is a definite order of operations within a process (from top to bottom), you can think of a 
process as executing in zero time. This means that a process can be used to describe circuits 
functionally, without regard to their actual timing, and multiple processes can be "executed" in parallel 
with little or no concern for which processes complete their operations first. 

A process can be thought of as a single concurrent statement written within a VHDL architecture, 
extending from the process keyword (or from the optional process name that precedes it) to the 
terminating end process keyword pair and semicolon. 
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The process name (process_name) appearing before the process keyword is optional and can be 
used to: (1) identify specific processes that are executing during simulation, and (2) more clearly 
distinguish elements such as local variables that may have common names in different processes. 
Immediately following the process statement is an optional list of signals enclosed by parentheses. 
This list of signals, called the sensitivity list, specifies the conditions under which the process is to 
begin executing. When a sensitivity list is associated with a process, any change in the value of any 
input in the list will result in immediate execution of the process. 

In the absence of a sensitivity list, the process will execute continuously, but must be provided with at 
least one wait statement to cause the process to suspend periodically. 

The order in which statements are written in a process is significant. You can think of a process as a 
kind of software program that is executed sequentially, from top to bottom, each time it is invoked 
during simulation. Consider, for example, the following process describing the operation of a counter: 

process(Clk) 

begin 

    if Clk = '1' and Clk'event then 

        if Load = '1' then 

            Q <= Data_in; 
        else 

            Q <= Q + 1; 
        end if; 

    end if; 

end process; 

When this process is executed, the statements appearing between the begin and end process 
statements are executed in sequence. In this example, the first statement is an if test that will 
determine if there was a rising edge on the Clk clock input. A second, nested if test determines if the 
counter should be loaded with Data_in or incremented, depending on the value of the Load input. 

Processes with sensitivity lists 

A process with a sensitivity list is executed during simulation whenever an event occurs on any of the 
signals in the sensitivity list. An event is defined as any change in value of a signal, such as when a 
signal of type Boolean changes from True to False, or when the value of an integer type signal is 
incremented or otherwise modified. 

Processes that include sensitivity lists are most often used to describe the behavior of circuits that 
respond to external stimuli. These circuits, which may be either combinational, sequential (registered), 
or a combination of the two, are normally connected with other sub-circuits or interfaces, via signals, to 
form a larger system. In a typical circuit application, such a process will include in its sensitivity list all 
inputs that have asynchronous behavior. These inputs may include clocks, reset signals, or inputs to 
blocks of combinational logic. 

The following is an example of a process that includes a sensitivity list. This process describes the 
operation of a clocked shift register with an asynchronous reset; note the use of the `event signal 
attribute to determine which of the two signals (Clk and Rst) had an event: 
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process(Rst, Clk) 

begin 

    if Rst = '1' then 

        Q <= "00000000"; 
    elsif Clk = '1' and Clk'event then 

        if Load = '1' then 

            Q <= Data_in; 
        else 

            Q <= Q(1 to 7) & Q(0); 
        end if; 

    end if; 

end process; 

During simulation, whenever there is an event on either Rst or Clk, this process statement will 
execute from the begin statement to the end process statement pair. If the Rst input is '1' 
(regardless of whether the event that triggered the process execution was Rst or Clk), then the output 
Q is set to a reset value of "00000000". If the value of Rst is not '1', then the Clk input is checked 
to determine if it has a value of '1' and had an event. This checking for both a value and an event is a 
common (and synthesizable) way of detecting transitions, or edges, on signals such as clocks. 

After all of the statements in the process have been analyzed and executed, the process is suspended 
until a new event occurs on one of the process's sensitivity list entries. 

For design descriptions intended for input to synthesis software, you should follow the above example 
and write process statements that include sensitivity lists, as this is the most widely used synthesis 
convention for registers. 

Processes without sensitivity lists 

A process that does not include a sensitivity list executes somewhat differently than a process with a 
sensitivity list. Rather than executing from the begin statement at the top of the process to the end 
process statement, a process with no sensitivity list executes from the beginning of the process to the 
first occurrence of a wait statement, then suspends until the condition specified in the wait statement is 
satisfied. If the process only includes a single wait statement, the process re-activates when the 
condition is satisfied and continues to the end process statement, then begins executing again from 
the beginning. If there are multiple wait statements in the process, the process executes only until the 
next wait statement is encountered. 

The following example demonstrates how this works, using a simplified Manchester encoder as an 
example: 

process 

begin 

    wait until Clk = '1' and Clk'event; 

    M_out <= data_in; 
    wait until Clk = '1' and Clk'event; 
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    M_out <= not data_in; 

end process; 

This process will suspend its execution at two points. The first wait until statement suspends the 
process until there is a rising edge on the clock (a transition to a value of '1'). When this rising edge 
condition has been met, the process continues execution by assigning the value of data_in to M_out. 
Next, the second wait until statement suspends the process until another rising edge has been 
detected on Clk. When this condition has been met, the process continues and assigns the inverted 
value of data_in to M_out. The process does not suspend at the end process statement, but instead 
loops back to the beginning and immediately starts processing over again. 
The use of multiple wait statements within a process makes it possible to describe very complex 
multiple-clock circuits and systems. Unfortunately, such design descriptions usually fall outside of the 
scope of today's synthesis tools. Rather than use multiple wait statements to describe such logic, you 
will probably use wait statements only when describing test stimulus. 

Using processes for combinational logic 

Concurrent signal assignments can be used to create combinational logic. When you write a sequence 
of concurrent signal assignments, each statement that you write is independent of all other statements 
and results in a unique combinational function (unless a guarded block or some other special feature is 
used to imply memory). 

If you wish, you can use sequential VHDL statements (in the form of a process or subprogram) to 
create combinational logic as well. Sequential VHDL statements can actually be more clear and 
concise for many types of combinational functions, as they allow the priority of operations to be clearly 
expressed within a combinational logic function. 

The following is an example of a simple combinational logic function (a 4-into-1 multiplexer) described 
using a process: 

entity simple_mux is 

    port (Sel: in bit_vector (0 to 1); 

             A, B, C, D: in bit; 

             Y: out bit); 

end simple_mux; 

architecture behavior of simple_mux is 

begin 

    process(Sel, A, B, C, D) 

    begin 

        if Sel = "00" then 

            Y <= A; 
        elsif Sel = "01" then 

            Y <= B; 
        elsif Sel = "10" then 

            Y <= C; 
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        elsif Sel = "11" then 

            Y <= D; 
        end if; 

    end process; 

end simple_mux; 

This simple process describes combinational logic because it conforms to the following rules: 

• The sensitivity list of the process includes all signals that are being read (i.e., used as inputs) within 
the process. 

• Assignment statements written for the process outputs (in this case only output Y) cover all possible 
combinations of the process inputs (in this case Sel, A, B, C and D). 

These two rules dictate whether the signal assignment logic generated from a process is strictly 
combinational or will require some form of memory element (such as a flip-flop or latch). 

For processes that include variable declarations, there is an additional rule that comes into play: 

• All variables used in the process must have a value assigned to them before they are read (i.e., 
used as inputs). 

An example of when an apparently combinational logic description actually describes registered logic is 
demonstrated by the modified (6-into-1) multiplexer description shown below: 

entity simple_mux is 

    port (Sel: in bit_vector (0 to 2); 

             A, B, C, D, E, F: in bit; 

             Y: out bit); 

end simple_mux; 

architecture behavior of simple_mux is 

begin 

    process(Sel, A, B, C, D, E, F) 

    begin 

        if Sel = "000" then 

            Y <= A; 
        elsif Sel = "001" then 

            Y <= B; 
        elsif Sel = "010" then 

            Y <= C; 
        elsif Sel = "011" then 

            Y <= D; 
        elsif Sel = "100" then 

            Y <= E; 
        elsif Sel = "101" then 
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            Y <= F; 
        end if; 

    end process; 

end simple_mux; 

This modified version of the multiplexer has only six of the eight possible values for Sel described in 
the if-then-elsif statement chain. What happens when Sel has a value of "110" or "111"?  Unlike 
many simpler hardware description languages (most notably languages such as ABEL or CUPL that 
are intended for programmable logic use), the default behavior in VHDL is to hold the values of 
unspecified signals. For output Y to hold its value when Sel has a value of "110" or "111", a memory 
element (such as a latch) will be required. The result is that the circuit as described is no longer a 
simple combinational logic function. 

Understanding what types of design descriptions will result in combinational logic and what types will 
result in latches and flip-flops is very important when writing VHDL for synthesis. 

Using processes for registered logic 

Perhaps the most common use of VHDL processes is to describe the behavior of circuits that have 
memory and must save their state over time. The sequential nature of VHDL processes (and 
subprograms) make them ideal for the description of such circuits. 

If your goal is to create registered logic (using either flip-flop or latch elements), then you will describe 
your design using one or more of the following methods: 

• Write a process that does not include all of its inputs in the sensitivity list. 
• Use incompletely specified if-then-elsif logic to imply that one or more signals must hold their 

values under certain conditions. 

• Use one or more variables in such a way that they must hold a value between iterations of the 
process. (For example, specify a variable as an input to an assignment before that variable has 
been assigned a value itself.) 

To ensure the highest level of compatibility with synthesis tools, you should use a combination of 
methods 1 and 2. The following example demonstrates how registered logic can be described using a 
process: 

-- Eight-bit  shifter 

-- 
library ieee; 

use ieee.std_logic_1164.all; 

entity rotate is 

    port( Clk, Rst, Load: in std_logic; 

              Data: in std_logic_vector(0 to 7); 

              Q: out std_logic_vector(0 to 7)); 

end rotate; 

architecture rotate1 of rotate is 
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    signal Qreg: std_logic_vector(0 to 7); 

begin 

    reg: process(Rst,Clk) 

    begin 

        if Rst = '1' then  -- Async reset 

            Qreg <= "00000000"; 
        elsif (Clk = '1' and Clk'event) then 

            if (Load = '1') then 

                Qreg <= Data; 
            else 

                Qreg <= Qreg(1 to 7) & Qreg(0); 

            end if; 

        end if; 

    end process; 

    Q <= Qreg; 
 end rotate1; 

In this example, the incomplete if-then-elsif statement implies that signal Qreg will hold its value when 
the two conditions (a reset or clock event) are false. 

Using processes for state machines 

State machines are a common form of sequential logic circuits that are used for generating or detecting 
sequences of events. To describe a synthesizable state machine in VHDL, you should follow a well-
established coding convention that makes use of enumerated types and processes. The following 
example demonstrates how to write a synthesizable state machine description using this coding 
convention.  

The circuit described is a simple freeze-frame unit that grabs and holds a single frame of NTSC color 
video image. This design description includes the frame detection and capture logic. The complete 
circuit requires an 8-bit D-A/A-D converter and a 256K X 8 static RAM. 

The design description makes use of a number of independent processes. The first process (which has 
been given the name of ADDRCTR), describes a large counter corresponding to the frame address 
counter in the circuit. This counter description makes use of the IEEE Standard 1076.3 numeric data 
type unsigned. 
The second process, SYNCCTR, also describes a counter using the unsigned data type. This counter is 
used to detect the vertical blanking interval, which indicates the start of one frame of video. 
The third and fourth processes (STREG and STTRANS) describe the operation of the video frame 
grabber controller logic, using the most common (and most easily synthesized) form for state 
machines. First, an enumerated type called states is declared that consists of the values 
StateLive, StateWait, StateSample, and StateDisplay. Two intermediate signals 
(current_state and next_state) are then introduced to represent the current state and calculated 
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next state of the machine. In the processes that follow, signal current_state represents a set of 
state registers, while next_state represents a combinational logic function. 

Process STREG describes the operation of the state registers, and simply loads the value of the 
calculated next state (signal next_state) into the state registers (current_state) whenever there 
is a synchronous clock event. This process also includes asynchronous reset logic that will set the 
machine to its initial state (StateLive) when the Rst input is asserted. 

The actual transition logic for the state machine is described in process STTRANS. In this process, a 
case statement is used to decode the current state of the machine (as represented by signal 
current_state) and define the transitions between states. This is an example where sequential 
VHDL statements are used to describe non-sequential (combinational) logic. 

-- A Video Frame Grabber. 

-- 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

entity video is 

    port (Reset, Clk: in std_logic; 

          Mode: in std_logic; 

          Data: in std_logic_vector(7 downto 0); 

          TestLoad: in std_logic; 

          Addr: out std_logic_vector(17 downto 0); 

          RAMWE: out std_logic; 

          RAMOE: out std_logic; 

          ADOE: out std_logic); 

end video; 

architecture control1 of video is 

    constant FRAMESIZE: integer := 253243; 

    constant TESTADDR: integer := 253000; 

    signal ENDFR: std_logic; 

    signal INCAD: std_logic; 

    signal VS: std_logic; 

    signal Sync: unsigned (6 downto 0); 

begin 

    -- Address counter. This counter increments until we reach the end of 

    -- the frame (address 253243), or until the input INCAD goes low. 
    ADDRCTR: process(Clk) 

        variable cnt: unsigned (17 downto 0); 
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    begin 

        if rising_edge(Clk) then 

            if TestLoad = '1' then 

                cnt := to_unsigned(TESTADDR,18); 

                ENDFR <= '0'; 
            else 

                if INCAD = '0' or cnt = FRAMESIZE then 

                    cnt := to_unsigned(0,18); 
                else 

                    cnt := cnt + to_unsigned(1,18); 
                end if; 

                if cnt = FRAMESIZE then 

                    ENDFR <= '1'; 
                else 

                    ENDFR <= '0'; 
                end if; 

            end if; 

        end if; 

        Addr <= std_logic_vector(cnt); 
    end process; 

    -- Vertical sync detector. Here we look for 128 bits of zero, which 

    -- indicates the vertical sync blanking interval. 
    SYNCCTR: process(Reset,Clk) 

    begin 

        if Reset = '1' then 

            Sync <= to_unsigned(0,7); 
        elsif rising_edge(Clk) then 

            if Data /= "00000000" or Sync = 127 then 

                Sync <= to_unsigned(0,7); 
            else 

                Sync <= Sync + to_unsigned(1,7); 
            end if; 

        end if; 

    end process; 

    VS <= '1' when Sync = 127 else '0'; 

    STATEMACHINE: block 
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        type states is (StateLive,StateWait,StateSample,StateDisplay); 

        signal current_state, next_state: states; 

    begin 

       -- State register process: 
     STREG: process(Reset,Clk) 

        begin 

            if Reset = '1' then 

                current_state <= StateLive; 
            elsif rising_edge(Clk) then 

                current_state <= next_state; 
            end if; 

        end process; 

     

        -- State transitions: 
        STTRANS: process(current_state,Mode,VS,ENDFR) 

        begin 

            case current_state is 

                when StateLive =>    -- Display live video on the output 

                    RAMWE <= '1'; 

                    RAMOE <= '1'; 

                    ADOE <= '0'; 

                    INCAD <= '0'; 
                    if Mode = '1' then 

                       next_state <= StateWait; 
                    else 

                       next_state <= StateLive 
                    end if; 

                when StateWait =>    -- Wait for vertical sync 

                    RAMWE <= '1'; 

                    RAMOE <= '1'; 

                    ADOE <= '0'; 

                    INCAD <= '0'; 
                    if VS = '1' then 

                       next_state <= StateSample; 
                    else 

                       next_state <= StateWait 
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                    endif; 

                when StateSample =>  -- Sample one frame of video 

                    RAMWE <= '0'; 

                    RAMOE <= '1'; 

                    ADOE <= '0'; 

                    INCAD <= '1'; 
                    if ENDFR = '1' then    

                       next_state <= StateDisplay; 
                    else 

                       next_state <= StateSample 
                    end if; 

                when StateDisplay => -- Display the stored frame 

                    RAMWE <= '1'; 

                    RAMOE <= '0'; 

                    ADOE <= '1'; 

                    INCAD <= '1'; 
                    if Mode = '1' then 

                       next_state <= StateLive; 
                    else 

                       next_state <= StateDisplay 
                    end if; 

            end case; 

        end process; 

    end block; 

end control1; 

Specifying State Machine Encodings 
The preceding video frame grabber has been described in an implementation-independent fashion, 
with the assumption that whatever synthesis tool is used to process this design will come up with an 
optimal solution, in  terms of the state encodings selected. For small designs such as this, or when you 
are not tightly constrained for space, it is probably fine to let the synthesis tool encode your states for 
you. In many cases, however, you will have to roll up your sleeves and work on improving the 
synthesis results yourself, by creating your own optimal state encodings. Determining an optimal 
encoding for a large state machine can be a long and tedious process. It is important to understand the 
various coding styles for manually-encoded machines, however, to get the most out of synthesis. 
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Using Constants for State Encodings 
The easiest way to specify an explicit encoding for a state machine is to replace the declaration and 
use of an enumerated type with a series of constant declarations. For the video frame grabber, for 
example, you could replace the declarations: 

type states is (StateLive,StateWait,StateSample,StateDisplay); 

signal current_state, next_state: states; 

with: 

type states is std_logic_vector(1 downto 0); 

constant StateLive: states := "00"; 

constant StateWait: states := "01"; 

constant StateSample: states := "11"; 

constant StateDisplay: states := "10"; 

signal current_state, next_state: states; 

Using these declarations will result in the precise encodings that you have specified in the synthesized 
circuit. There is one additional modification that must be made to this frame grabber state machine if 
you specify the states using declarations based on std_logic_vector, however. Because the base type 
of std_logic_vector (std_logic) has nine unique values, the four constants that have been declared 
(StateLive, StateWait, StateSample and StateDisplay) do not represent all possible values 
for the state type. For this reason, an others clause will have to be added to the case statement 
describing the transitions of the machine, as in: 

when others => 

    null; 

Using the Enum_encoding Synthesis Attribute 
An alternate method of specifying state machine encodings is provided in some synthesis tools. This 
method makes use of a non-standard (but widely supported) attribute called enum_encoding. The 
following modified declarations (again, using the video frame grabber state machine as an example) 
uses the enum_encoding attribute to specify the same state encoding used in the previous example: 

type states is (StateLive,StateWait,StateSample,StateDisplay); 

attribute enum_encoding of states: type is "00 01 11 10"; 

signal current_state, next_state: states; 

The enum_encoding attribute used in this example has been defined elsewhere (most probably in a 
special library package provided by the synthesis vendor) as a string: 

attribute enum_encoding: string; 

This attribute is recognized by the synthesis tool, which encodes the generated state machine circuitry 
accordingly. During simulation, the enum_encoding attribute is ignored, and the enumerated values 
are displayed instead. 
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Specifying a One-hot Encoding 
One common technique for optimizing state machine logic is to use what is called a one-hot encoding, 
in which there is one register dedicated to each state in the machine. One-hot machines require more 
register resources than more typical, maximally-encoded machines, but can result in tremendous 
savings in the combinational logic required for next-state and output decoding. This trade-off can be 
particularly effective in device technologies that have an abundance of built-in registers, but that suffer 
from limited (or relatively slow) routing resources. 

When you first try to use a one-hot approach to state encoding, it is tempting to describe the machine 
using the same methods that you might have used for your other state machines. The following 
declarations represent an attempt to encode the video frame grabber state machine one-hot using 
constant declarations: 

type states is std_logic_vector(3 downto 0); 

constant StateLive: states := "0001"; 

constant StateWait: states := "0010"; 

constant StateSample: states := "0100"; 

constant StateDisplay: states := "1000"; 

signal current_state, next_state: states; 

At first glance this looks correct; each state is represented by a single bit being asserted, and when 
simulated and synthesized, the machine will indeed transition to the appropriate encoded state for each 
transition described in the case statement shown earlier. In terms of the logic required for state 
decoding, however, a genuine one-hot machine has not been achieved. This is because the case 
statement written describing the state transitions implicitly refers to all four state registers when 
decoding the current state of the machine. A true, optimal one-hot machine only requires that one 
register be observed to determine if the machine is in a given state. 

To generate the correct logic, optimized as a one-hot encoded machine, the description has to be 
modified somewhat, so that only one state register is examined for each possible transition. The 
easiest way to do this is to replace the case statement with a series of if statements, as follows:.  

-- State transitions for one-hot encoding: 
STTRANS: process(current_state,Mode,VS,ENDFR) 

begin 

        if current_state(0) = '1' then   -- StateLive 

                RAMWE <= '1'; 

                RAMOE <= '1'; 

                ADOE <= '0'; 

                INCAD <= '0'; 
                if Mode = '1' then 

                   next_state <= StateWait; 
                else 

                   next_state <= StateLive 
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                end if; 

        end if; 

        if current_state(1) = '1' then   -- StateWait 

                RAMWE <= '1'; 

                RAMOE <= '1'; 

                ADOE <= '0'; 

                INCAD <= '0'; 
                if VS = '1' then 

                   next_state <= StateSample; 
                else 

                   next_state <= StateWait 
                end if; 

        end if; 

        if current_state(2) = '1' then   -- StateSample 

                RAMWE <= '0'; 

                RAMOE <= '1'; 

                ADOE <= '0'; 

                INCAD <= '1'; 
                if ENDFR = '1' then    

                   next_state <= StateDisplay; 
                else 

                   next_state <= StateSample 
                end if; 

        end if; 

        if current_state(3) = '1' then   -- StateDisplay 

                RAMWE <= '1'; 

                RAMOE <= '0'; 

                ADOE <= '1'; 

                INCAD <= '1'; 
                if Mode = '1' then 

                   next_state <= StateLive; 
                else 

                   next_state <= StateDisplay 
                end if; 

        end if; 

end process; 
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This description can be made more readable by introducing constants for the index values for each 
state register. 

Using processes for test stimulus 

In addition to their use for describing combinational and registered circuits to be synthesized or 
modeled for simulation, VHDL processes are also important for describing the test environment in the 
form of sequential application of stimulus and (if desired) checking of resulting circuit outputs. 

A process that is intended for testing (as part of a test bench) will normally have no sensitivity list. 
 Instead, it will have a series of wait statements that provide time for the unit under test to stabilize 
between the assignment of test inputs. Because a process intended for use as a test bench does not 
describe hardware to be synthesized, you are free to use any legal features and style of VHDL without 
regard to the limitations of synthesis. 
The following is a simplistic test bench example written with a single process statement. This process 
statement might be used to apply a sequence of input values to a lower-level circuit and check the 
state of that circuit's outputs at various points in time. 

-- A simple process to apply various stimulus over time... 
process 

    constant PERIOD: time := 40 ns; 

begin 

    Rst <= '1'; 

    A <= "00000000"; 

    B <= "00000000"; 
    wait for PERIOD; 

    CheckState(Q, "00000000"); 

    Rst <= '0'; 

    A <= "10101010"; 

    B <= "01010101"; 
    wait for PERIOD * 4; 

    CheckState(Q, "11111111"); 

    A <= "11111010"; 

    B <= "01011111"; 
    wait for PERIOD * 2; 

    CheckState(Q, "00110101"); 
    wait; 

end process; 

In this example, the process executes just once before suspending indefinitely (as indicated by the final 
wait statement). The stimulus is described by a sequence of assignments to signals A and B, and by 
calls to a procedure (defined elsewhere) named CheckState.  Wait statements are used to describe 
a delay between each test sequence. 



VHDL Language Reference 

TR0114 (v1.1) May 20, 2005 97 

Sequential statements in subprograms 
We've seen examples of how sequential statements are written in a process statement. The process 
statement is relatively easy to understand if you think of it as a small software program that executes 
independent of other processes and concurrent statements during simulation. 

Functions and procedures (which are collectively called subprograms) are very similar to processes in 
that they contain sequential statements executed as independent 'programs' during simulation. The 
parameters you pass into a subprogram are analogous to the sensitivity list of a process; whenever 
there is an event on any object (signal or variable) being passed as an argument to a subprogram, that 
subprogram is executed and its outputs (whether they are output parameters, in the case of a 
procedure, or the return value, in the case of a function) are recalculated. 

The following example includes a procedure declared within the architecture. The procedure counts the 
number of ones and zeroes there are in a std_logic_vector input (of arbitrary width) and returns the 
count values as output parameters. The procedure is used to build two result strings containing the 
appropriate number of ones and zeroes, left justified and padded with 'X' values. (For example, an 
input with the values "1010001001" would result in the values "1111XXXXXX" and "000000XXXX".) 

entity proc is 

    port (Clk: in std_logic; 

             Rst: in std_logic; 

             InVector: in std_logic_vector(0 to 9); 

             OutOnes: out std_logic_vector(0 to 9); 

             OutZeroes: out std_logic_vector(0 to 9)); 

end proc; 

architecture behavior of proc is 

    procedure CountBits(InVector: in std_logic_vector; 

                        ones,zeroes: out natural) is 

        variable cnt1: natural := 0; 

        variable cnt0: natural := 0; 

    begin 

        for I in 0 to InVector'right loop 

            case InVector(I) is 

                when '1' => cnt1 := cnt1 + 1; 

                when '0' => cnt0 := cnt0 + 1; 

                when others => null; 

            end case; 

        end loop; 

        ones := cnt1; 

        zeroes := cnt0; 
    end CountBits; 
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    signal Tmp1, Tmp0: std_logic_vector(0 to 9); 

begin 

    process(Rst, Clk) 

    begin 

        if Rst = '1' then 

            OutOnes <= (others => '0'); 

            OutZeroes <= (others => '0');  

        elsif rising_edge(Clk) then 

            OutOnes <= Tmp1; 

            OutZeroes <= Tmp0; 
        end if; 

    end process; 

    process(InVector) 

        variable ones, zeroes: natural; 

    begin 

        Countbits(InVector,ones,zeroes); 
        Tmp0 <= (others => 'X'); 

        Tmp1 <= (others => 'X'); 

        for I in 0 to ones - 1 loop 

            Tmp1(I) <= '1'; 
        end loop; 

        for I in 0 to zeroes - 1 loop 

            Tmp0(I) <= '0'; 
        end loop; 

    end process; 

end behavior; 

This example shows that a procedure containing sequential statements can be invoked from within a 
process – or even from within another procedure. The calling process simply suspends until the 
procedure has completed execution. 

Notes 
The example above is theoretically synthesizable, but the fact that the procedure has been written 
without regard to the width of the inputs will probably make it impossible to process by synthesis tools. 
If this design were to be synthesized, the variables cnt1 and cnt0 would have to be given range 
constraints. 
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Signal and variable assignments 
One important aspect of VHDL you should clearly understand is the relationship between sequential 
statements (in a process or subprogram) and the scheduling of signal and variable assignments. 
Signals within processes have fundamentally different behavior from variables. Variables are assigned 
new values immediately, while signal assignments are scheduled and do not occur until the current 
process (or subprogram) has been suspended. When you describe complex logic using sequential 
assignments, you must carefully consider which type of object (signal or variable) is appropriate for that 
part of your design. 

An example of where signal assignments would be appropriate, is an 8-bit serial cyclic-redundancy-
check (CRC) generator. Signals are required because a chain of registers are being constructed. Each 
register in the chain is clocked from a common source, and data moves from one register to the next 
only when there is an event on Clk. The data could be described as being “scheduled.” 

-- 8-bit Serial CRC Generator. 

-- 
library ieee; 

use ieee.std_logic_1164.all; 

entity crc8s is 

   port (Clk,Set, Din: in std_logic; 

         CRC_Sum: out std_logic_vector(15 downto 0)); 

end crc8s; 

architecture behavior of crc8s is 

    signal X: std_logic_vector(15 downto 0); 

begin 

    process(Clk,Set) 

    begin 

        if Set = '1' then 

            X <= "1111111111111111"; 
        elsif rising_edge(Clk) then 

            X(0)  <= Din xor X(15); 

            X(1)  <= X(0); 

            X(2)  <= X(1); 

            X(3)  <= X(2); 

            X(4)  <= X(3); 
            X(5)  <= X(4) xor Din xor X(15); 

            X(6)  <= X(5); 

            X(7)  <= X(6); 

            X(8)  <= X(7); 
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            X(9)  <= X(8); 

            X(10) <= X(9); 

            X(11) <= X(10); 
            X(12) <= X(11) xor Din xor X(15); 

            X(13) <= X(12); 

            X(14) <= X(13); 

            X(15) <= X(14); 
        end if; 

    end process; 

    CRC_Sum <= X; 
end behavior; 

Because the data moving from register to register is scheduled, this example would not work if X was 
described using a variable instead of a signal.  If a variable was substituted for X, the assignments for 
each stage of the CRC generation would be immediate and thus would not describe a chain of 
registers. 
Also, the assignment of X to CRC_Sum must be placed outside the process. If you were to write the 
assignment to CRC_Sum within the process, as in: 

            . . . 

            X(14) <= X(13); 

            X(15) <= X(14); 
        end if; 

       CRC_Sum <= X; 
    end process; 

end behavior; 

the result would not be what you intended. This is because the assignment of CRC_Sum will be subject 
to the execution and signal assignment rules of a process. In this case, the assignment of a final value 
to X will be delayed until the process suspends, and CRC_Sum will not be updated until the next time 
the process executes. (As it turns out, the next time the process executes may well be on the falling 
edge of the clock, meaning that CRC_Sum would be delayed by half a clock cycle.) 

If-then-else statements 
VHDL includes a variety of control statements that can be used to describe combinational functions, 
indicate priorities of operations, and specify other high-level behavior. 
The if-then-else construct is the most common form of control statement in VHDL. The general form of 
the if-then-else construct is: 

if first_condition then 

    statements 
elsif second_condition then 
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   statements 
else 

   statements 
end if; 

The conditions specified in an if-then-else construct must evaluate to a Boolean type. This means that 
the following example is incorrect: 

procedure Mux(signal A, B, S: in std_logic; signal O: out std_logic) is 

begin 

    if S then     -- Error:  S is not Boolean! 

        O <= B; 
    else 

        O <= A; 
    end if; 

end Mux; 

Instead, this example must be modified so that the if statement condition evaluates to a Boolean 
expression: 

if S = '1' then    -- Now it will work... 

        O <= B; 
    else 

        O <= A; 
    end if; 

end Mux; 

The statement parts of an if-then-else construct can contain any sequential VHDL statements, 
including other if-then-else statement constructs. This means that you can nest multiple levels of if-
then-else statements, in the following form: 

if outer_condition then 

    statements 
else 

    if inner_condition then 

        statements 
    end if; 

end if; 



VHDL Language Reference 

102 TR0114 (v1.1) May 20, 2005 

Case statements 
Case statements are a type of control statement that can be used as alternatives to if-then-else 
constructs. Case statements have the following general form: 

case control_expression is 

    when test_expression1  => 

        statements 
    when test_expression2  => 

        statements 
    when others  => 

        statements 
end case; 

The test expressions of a case statement must be mutually exclusive, meaning that no two test 
expressions are allowed to be true at the same time. Case statements must also include all possible 
conditions of the control expression. (The others expression can be used to guarantee that all 
conditions are covered.) 
The primary difference between descriptions written using case statements from those written using if-
then-else statements is that if-then-else statements imply a priority of conditions, while a case 
statement does not imply any priority. (This is similar to the difference between conditional and 
selected assignments). 

Loops 
Loop statements are a category of control structures that allow you to specify repeating sequences of 
behavior in a circuit. There are three primary types of loops in VHDL: for loops, while loops, and 
infinite loops. 

For loop 
The for loop is a sequential statement that allows you to specify a fixed number of iterations in a 
behavioral design description. The following architecture demonstrates how a simple 8-bit parity 
generator can be described using a for loop: 

library ieee; 

use ieee.std_logic_1164.all; 

entity parity10 is 

    port(D: in std_logic_vector(0 to 9); 

         ODD: out std_logic); 

    constant WIDTH: integer := 10; 

end parity10; 

architecture behavior of parity10 is 

begin 
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    process(D) 

        variable otmp: Boolean; 

    begin 

        otmp := false; 
        for i in 0 to D'length - 1 loop 

            if D(i) = '1' then 

                otmp := not otmp; 

            end if; 

        end loop; 

        if otmp then 

            ODD <= '1'; 
        else 

            ODD <= '0'; 
        end if; 

    end process; 

end behavior; 

The for loop includes an automatic declaration for the index (i in this example). You do not need to 
separately declare the index variable. 

The index variable and values specified for the loop do not have to be numeric types and values. In 
fact, the index range specification does not even have to be represented by a range. Instead, it can be 
represented by a type or sub-type indicator. The following example shows how an enumerated type 
can be used in a loop statement: 

architecture looper2 of my_entity is 

    type stateval is Init, Clear, Send, Receive, Error;     -- States of a 
machine 
begin 

    . . . 
    process(a) 

    begin 

        for state in stateval loop 

            case state is 

                when Init => 

                    ... 
                when Clear => 

                    ... 
                when Send => 

                    ... 
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                when Receive => 

                    ... 
                when Error => 

                    ... 
            end case; 

        end loop; 

    end process; 

    . . . 
end looper2; 

For loops can be given an optional name, as shown in the following example: 

loop1: for state in stateval loop 

    if current_state = state  then 

         valid_state <= true; 
    end if; 

end loop loop1; 

The loop name can be used to help distinguish between the loop index variable and other similarly-
named objects, and to specify which of the multiple nested loops is to be terminated. Otherwise, the 
loop name serves no purpose. 

While loop 
A while loop is another form of sequential loop statement that specifies the conditions under which the 
loop should continue, rather than specifying a discrete number of iterations. The general form of the 
while loop is shown below: 

architecture while_loop of my_entity is 

begin 

    . . . 
    process(. . .) 

    begin 

        . . . 
        loop_name: while (condition) loop 

             -- repeated statements go here 
        end loop loop_name; 

        . . . 
    end process; 

    . . . 
end while_loop; 



VHDL Language Reference 

TR0114 (v1.1) May 20, 2005 105 

Like the for loop, a while loop can only be entered and used in sequential VHDL statements (i.e., in a 
process, function or procedure). The loop name is optional. 
The following example uses a while loop to describe a constantly running clock that might be used in a 
test bench. The loop causes the clock signal to toggle with each loop iteration, and the loop condition 
will cause the loop to terminate if either of two flags (error_flag or done) are asserted. 

process 

begin 

    while error_flag /= '1'  and done /= '1' loop 

        Clock <= not Clock; 

        wait for CLK_PERIOD/2; 

    end loop; 

end process; 

Notes 
Although while loops are quite useful in test benches and simulation models, you may have trouble if 
you attempt to synthesize them. Synthesis tools may be unable to generate a hardware representation 
for a while loop, particularly if the loop expression depends on non-static elements such as signals and 
variables. Because support for while loops varies widely among synthesis tools, it is recommend that 
you not use them in synthesizable design descriptions. 

Infinite loop 
An infinite loop is a loop statement that does not include a for or while iteration keyword (or iteration 
scheme). An infinite loop will usually include an exit condition, as shown in the template below: 

architecture inifinite_loop of my_entity is 

begin 

    . . . 
    process(. . .) 

        . . . 
        loop_name: loop 

            . . . 
            exit when (condition); 

        end loop loop_name; 

    end process; 

    . . . 
end infinite_loop; 

An infinite loop using a wait statement is shown in the example below. This example exhibits exactly 
the same behavior as a while loop: 
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process 

begin 

    loop 

        Clock <= not Clock; 

        wait for CLK_PERIOD/2; 

        if done = '1' or error_flag = '1' then 

            exit; 

        end if; 

    end loop; 

end process; 

As with a while loop, an infinite loop probably has no equivalent in hardware and is therefore not 
synthesizable. 

Loop termination 
There are many possible reasons for wanting to jump out of a loop before its normal terminating 
condition has been reached. The three types of loops previously described all have the ability to be 
terminated prematurely. Loop termination is performed through the use of an exit statement. When an 
exit statement is encountered, its condition is tested and, if the condition is true, the simulator skips the 
remaining statements in the loop and all remaining loop iterations, and continues execution at the 
statement immediately following the end loop statement. 

The following example demonstrates how loop termination can be used to halt a sequence of test 
vectors that are being executed when an error is detected: 

for i in 0 to VectorCount loop 

    ApplyVector(InputVec(i), ResultVec); 
     exit when CheckOutput(OutputVec(i), ResultVec) = FatalError; 

end loop; 

The exit condition is optional; an exit statement without an exit condition will unconditionally terminate 
when the exit statement is encountered. The following example shows an unconditional exit 
termination specified in combination with an if-then statement to achieve the same results as in the 
previous example: 

for i in 0 to VectorCount loop 

    ApplyVector(InputVec(i), ResultVec); 
     if CheckOutput(OutputVec(i), ResultVec) = FatalError then 

        exit; 

end loop; 

When multiple loops are nested, the exit statement will terminate only the innermost loop. If you need 
to terminate a loop that is not the innermost loop, you can make use of loop labels to specify which 
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loop is being terminated. The following example shows how loop labels are specified in exit 
statements: 

LOOP1: while (StatusFlag = STATUS_OK) loop 

       GenerateSequence(InputVec,OutputVec,VectorCount,Seed); 
        LOOP2: for i in 0 to VectorCount loop 

            ApplyVector(InputVec(i), ResultVec); 

            ErrStatus := CheckOutput(OutputVec(i), ResultVec) = TestError; 
            if ErrStatus = ERR_COMPARE then 

                ReportError(); 
                exit LOOP2; 

            elsif ErrStatus = ERR_FATAL then 

                ReportFatal(); 
                exit LOOP1; 

            end if; 

        end loop LOOP2; 

end loop LOOP1; 



VHDL Language Reference 

108 TR0114 (v1.1) May 20, 2005 

Modularity Features 
Modular (or structured) programming is a technique that you can use to enhance your own design 
productivity, as well as that of your design team. A modular design approach allows commonly-used 
segments of VHDL code to be re-used. It also enhances design readability. 

VHDL includes many features that can help you create modular designs. The following links look at 
features that allow you to quickly and easily create reusable segments of your design, based on 
methods similar to those used in software programming languages. 

Functions and procedures 
Functions and procedures in VHDL, which are collectively known as subprograms, are directly 
analogous to functions and procedures in a high-level software programming language such as C or 
Pascal. A procedure is a subprogram that has an argument list consisting of inputs and outputs, and no 
return value. A function is a subprogram that has only inputs in its argument list, and has a return 
value. 

Subprograms are useful for isolating commonly-used segments of VHDL source code. They can either 
be defined locally (within an architecture, for example), or they can be placed in a package and used 
globally throughout the design description or project. 

Statements within a subprogram are sequential (like a process), regardless of where the subprogram is 
invoked. Subprograms can be invoked from within the concurrent area of an architecture or from within 
a sequential process or higher-level subprogram. They can also be invoked from within other 
subprograms. 

Subprograms are very much like processes in VHDL. In fact, any statement that you can enter in a 
VHDL process can also be entered in a function or procedure, with the exception of a wait statement 
(since a subprogram executes once each time it is invoked and cannot be suspended while it is 
executing). It is therefore useful to think of subprograms as processes that (1) have been located 
outside the body of an architecture, and (2) operate only on their input and (in the case of procedures) 
their output parameters. 

Nesting of functions and procedures is allowed to any level of complexity, and recursion is also 
supported in the language. (Of course, if you expect to generate actual hardware from your VHDL 
descriptions using synthesis tools, then you will need to avoid writing recursive functions and 
procedures, as such descriptions are not synthesizable). 

Functions 
A function is a subprogram that accepts zero or more input arguments and returns a single output 
value. Because a function returns a value, it has a type associated with it. The following is an example 
of a function that accepts two integer arguments and returns the greater of the two as an integer value: 

function maxval (arg1, arg2: integer) return integer is 

     variable result: integer; 

begin 

     if arg1 > arg2 then 

         result := arg1; 
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     else 

         result := arg2; 
     end if; 

      return result; 

end maxval; 

The arguments to a function are all inputs to the function. They cannot be modified or otherwise 
assigned values within the function. By default, the arguments are of a constant kind. This means that 
the arguments are interpreted within the function as if they had been supplied as constants declared in 
the function itself. An alternative type of argument, indicated by the use of the signal keyword, allows 
the use of signal attributes (such as 'event) within the function. The following function (which is 
provided in the IEEE 1164 standard library) demonstrates the use of a signal argument in a function: 

function rising_edge (signal s: std_logic) return boolean is 

begin 

     return (s'event and (To_X01(s) = '1') and 

         (To_X01(s'last_value) = '0')); 
end rising_edge; 

In this example, the keyword signal is critical to the correct operation of the function. In the absence of 
the signal keyword, the 'event attribute would not be preserved. 

Functions are most commonly used in situations where you require a calculation or conversion based 
on the subprogram inputs. Examples of this include arithmetic or logic functions (such as the one just 
presented), type conversion functions, and value checks such as you might use when writing a test 
bench. 

Because they return a value, functions must be used as part of a larger expression. The following 
VHDL code fragment demonstrates a type conversion function being used in an expression to convert 
an array data type to an integer: 

signal Offset: integer range (0 to 1023); 

signal BUS1: std_logic_vector(11 downto 0); 

 . . . 

Offset <= to_integer(BUS1) + 136; 

Operators as Functions 
One interesting feature of VHDL is its support for operator overloading. Operator overloading allows 
you to specify custom functions representing symbolic operations for your own data types. To define a 
new operation (or modify an existing one), you simply write a function and enclose its name (which can 
be a non-numeric name such as an operator symbol) in double-quote characters. 

The following operator function is taken directly from the IEEE 1164 standard logic package, and 
demonstrates how operator overloading works: 

function "and" (l : std_logic; r : std_logic ) return UX01 is 
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begin 

    return(and_table(l, r)); 

end "and"; 

In this example, the function and is declared as a function returning the type UX01 (a four-valued logic 
type used internally in the standard logic package). The function is identified during compilation by its 
name (and) and by the types and number of its arguments. For example, in the expression: 

architecture simple of and_operation is 

    signal Y, A, B: std_logic; 

begin 

    Y <= A and B; 

end simple; 

the and operation is actually a function defined using the previously listed statements. In fact, all of the 
standard operations that you use in VHDL (including such operators as and, or, not, +, -, *, & and <) 
are actually functions declared in libraries such as std and ieee. 

Notes 
In source code listings presented in this document the typographic convention of listing all VHDL 
keywords in bold face has been used. As you have just seen, however, many of the keywords that are 
listed in bold face are actually functions defined in a standard library. 

Procedures 
Procedures differ from functions in that they do not have a return value, and their arguments may 
include both inputs and outputs to the subprogram. Because each argument to a procedure has a 
mode (in, out, or inout), they can be used very much like you would use an entity/architecture pair to 
help simplify and modularize a large and complex design description. 

Procedures are used as independent statements, either within the concurrent area of an architecture or 
within the sequential statement area of a process or subprogram. 

The following sample procedure defines the behavior of a clocked JK flip-flop with an asynchronous 
reset: 

procedure jkff (signal Rst, Clk: in std_logic; 

                        signal J, K: in std_logic; 

                        signal Q,Qbar: inout std_logic) is 

begin 

    if Rst = '1' then 

        Q <= '0'; 
    elsif Clk = '1' and Clk'event then 

        if J = '1' and K = '1' then 

            Q <= Qbar; 
        elsif J = '1' and K = '0' then 
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            Q <= '1'; 
        elsif J = '0' and K = '1' then 

            Q <= '0'; 
        end if; 

    end if; 

    Qbar <= not Q; 

end jkff; 

A procedure may include a wait statement, unless it has been called from within a process that has a 
sensitivity list. 

Notes 
Variables declared and used within a procedure are not preserved between different executions of the 
procedure. This is unlike a process, in which variables maintain their values between executions. 
Variables within a procedure therefore do not maintain their values over time, unless the procedure is 
suspended with a wait statement. 

Declaring a global subprogram 
Functions and procedures can be declared either globally, so they are usable throughout a design 
description, or they can be declared locally within the declarative region of an architecture, block, 
process, or even within another subprogram. If you are writing a subprogram that will be used 
throughout your design, you will write the subprogram declaration in an external package, as shown in 
the following example: 

package my_package is 

    function my_global_function(...) 

        return bit; 

end my_package; 

package body my_package is 

    function my_global_function(...) 

        return bit is 

    begin 

        . . . 
    end my_global_function; 

end my_package; 

. . . 
use work.my_package.my_global_function; 

entity my_design is 
begin 
    . . . 
end my_design; 
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In this example, the function my_global_function() has been declared within the package 
my_package. The actual body of the function – the sequence of statements that define its operation – 
is placed into a package body. (The reasons why a subprogram requires a package body in addition to 
a package are somewhat obscure, but they have to do with the fact that the statements in a 
subprogram must be executed when the design description is simulated, while other declarations 
appearing in a package can be completely resolved at the time the VHDL description is first analyzed 
by the VHDL compiler.) To use the global function in subsequent architectures (such as the 
architecture associated with entity my_design in this example), a use statement (and library 
statement, if the package has been compiled into a named library) must precede the declaration for 
that architecture or its parent entity. 

Declaring a local subprogram 
Another way of using subprograms is to declare them locally, such as within an architecture or block 
declaration. In the following example, my_local_function() has been declared entirely within the 
architecture my_architecture: 

architecture my_architecture of my_design is 

begin 

    my_process: process(...) 

        function my_local_function(...) 

            return bit is 

        begin 

            . . . 
        end my_local_function; 

    begin 

        . . . 
    end process my_process; 

end my_architecture; 

This example demonstrates the concept of local scoping. VHDL objects (such as signals, variables and 
constants) can be declared at many points in a design, and that the visibility, or scoping, of those 
objects depends on where they have been declared. Subprograms (functions and procedures) also 
have scoping. In this example, the function my_local_function can only be referenced within the 
architecture in which it has been declared and defined. 

Consistent scoping of objects and subprograms is an important part of modular VHDL coding and of 
structured programming in general. If you will only be using an object or subprogram in one section of 
your overall design, then you should keep the declaration of that object or subprogram local to that 
section of the design. This will make it possible to re-use that section of the design elsewhere with a 
minimum of fuss (since you won't have to remember to declare the object or subprogram globally in the 
new design). 
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Subprogram overloading 
Because a function or procedure is uniquely identified by its name in combination with its argument 
types, there can be more than one function or procedure defined with the same name, depending on 
the types of the operands required. This feature (called subprogram overloading) is important because 
the function required to perform a given operation on one type of data may be quite different than the 
function required for another type. 

It is unlikely that you will need to use subprogram overloading in your own design efforts. Instead, you 
will use the standard data types provided for you in the language standards, and you will use the 
predefined operators for those data types exclusively. You might find it useful, however, to look over 
the operators defined in the standard libraries so you have a better idea of the capabilities of each 
standard data type provided. 

Parameter types 
Subprograms operate on values or objects that are passed in as parameters to the subprogram. 
Procedures differ from functions in that they can also pass information out on the parameter list. (The 
parameters of a procedure have directions, or modes.) 
There are three classes of parameters available for subprograms: constant, variable and signal. The 
default class, if no other class is specified, is constant. The parameters that are used within the 
function or procedure are called the formal parameters, while the parameters passed into the function 
or procedure are called the actual parameters. 
The primary difference between constant, variable and signal parameters is the type of actual 
parameters that can be passed into the subprogram when it is called. If the formal parameter of a 
subprogram is of class constant, the actual parameter can be any expression that evaluates to a data 
type matching that of the formal parameter. For parameters of class variable or signal, the actual 
parameters must be variable or signal objects, respectively. 

Parameters of subprograms transfer only the value of the actual parameters (those parameters 
specified when the subprogram is called) for the formal parameters (the parameters specified in the 
subprogram declaration). Attribute information is not passed directly into the subprogram. (The 
attributes that you will most often be concerned with, such as 'event, will be available if you are using 
parameters of class signal.) 

Mapping of parameters 
Many of the examples used in the topics within this sub-folder have used what is referred to as 
positional association to describe how actual parameters are paired with formal parameters of the 
subprogram. 

Positional association is a quick and convenient way to describe the mapping of parameters, but it can 
be error-prone.  

For this reason, you might want to write your subprogram references using an alternate form of port 
map called named association. Named association guarantees that the correct parameters are 
connected, and it also gives you the ability to re-order the parameters as needed. 

The following example shows how the same subprogram might be referenced using both positional 
and named association: 
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dff(Rst,Clk,Data,Result); 

dff(Rst=>Rst,C=>Clk,D=>Data,a=>Result); 

The special operator => indicates exactly which lower-level ports are to be connected to which higher-
level signals. 
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Partitioning Features 
VHDL provides many high-level features to help you manage a complex design description. In fact, 
design management is one of VHDL's key strengths when compared to alternative design entry 
languages and methods. 

The modularity features (procedures and functions) are one aspect of design management, allowing 
commonly-used declarations and sequential statements to be collected in one place. Design 
partitioning is another important aspect of design management. Design partitioning goes beyond 
simpler design modularity methods to provide comprehensive design management across multiple 
projects and allow alternative structural implementations to be tried out with minimal effort. 

Design partitioning is particularly useful for those designs being developed in a team environment, as it 
promotes cooperative design efforts and well-defined system interfaces. 

Blocks 
Blocks are the simplest form of design partitioning. They provide an easy way to segment a large 
VHDL architecture into multiple self-contained parts. Blocks allow the logical grouping of statements 
within an architecture, and provide a place to declare locally-used signals, constants, and other objects 
as needed. 

VHDL blocks are analogous to sheets in a multi-sheet schematic. They do not represent re-usable 
components (unless you re-use them by copying them with your text editor or by using configurations), 
but do enhance readability by allowing declarations of objects to be kept close to where those objects 
are actually used. 
The general form of the block statement is shown below: 

architecture my_arch of my_entity is 

begin 

    BLOCK1: block 

        signal a,b: std_logic; 

    begin 

        -- some local statements here 
    end block BLOCK1; 

    BLOCK2: block 

        signal a,b std_logic; 

    begin 

        -- some other local statements here 

        -- Note that 'a' and 'b' are unique to this block! 
    end block BLOCK2; 

end my_arch; 

This simple example includes two blocks, named BLOCK1 and BLOCK2, that each include declarations 
for local signals. In the first block, BLOCK1, the signals a and b are declared prior to the begin 
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statement of the block. These signals are therefore local to block BLOCK1 and are not visible outside of 
it. The second block, BLOCK2, also has declarations for local signals named a and b, but these are not 
the same signals as those declared in block BLOCK1. 

This concept of local declarations is important to understand and is probably familiar to you if you have 
used high-level programming languages. One of the most important techniques of structured 
programming (whether you are describing software or hardware) is to minimize the overall complexity 
of your design description by localizing the declarations as much as is practical. Keeping signals local 
will make the design description easier to read, allow it to be modified more easily in the future, and 
also enhance design re-use, since it will be easier to copy one portion of the design to another project 
or source file. 

Nested Blocks 
Blocks can be nested, as shown in the following example: 

architecture my_arch of my_entity is 

begin 

    BLOCK1: block 

        signal a,b: std_logic; 

    begin 

        BLOCK2: block 

            signal c,d std_logic; 

        begin 

            -- This block is now local to block BLOCK1 and has 

            -- access to 'a' and 'b' 
        end block BLOCK2; 

    end block BLOCK1; 

end my_arch; 

In this example, block BLOCK2 has been placed within block BLOCK1. This means that all declarations 
made within BLOCK1 (signals a and b, in this example) are visible both within block BLOCK1 and block 
BLOCK2.  The reverse is not true, however. The declarations for c and d within block BLOCK2 are local 
only to BLOCK2 and are not visible outside that block. What happens when the same signals are 
declared in two blocks that are nested? Consider the following: 

architecture my_arch of my_entity is 

begin 

    BLOCK1: block 

        signal a,b: std_logic; 

    begin 

        BLOCK2: block 

            signal a,b std_logic; 

        begin 
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            -- This a and b overrides previous 
        end block BLOCK2; 

    end block BLOCK1; 

end my_arch; 

In this example, the signals a and b are declared both in the outer block (BLOCK1) and in the inner 
block (BLOCK2). The result is that the signals a and b in the outer block are hidden (but not replaced or 
overwritten) by the declarations of a and b in the inner block. 

Guarded Blocks 
Guarded blocks are special forms of block declarations that include an additional expression known as 
a guard expression. The guard expression enables or disables drivers within the block, allowing circuits 
such as latches and output enables to be easily described using a dataflow style of VHDL. 

The following example shows how a guarded block can be used to describe the operation of a latch: 

use ieee.std_logic_1164.all; 

entity latch is 

    port( D, LE: in std_logic; 

             Q, QBar: out std_logic); 

end latch; 

architecture mylatch of latch is 

begin 

    L1: block (LE = '1') 

    begin 

        Q <= guarded D after 5 ns; 

        QBar <= guarded not(D) after 7 ns; 

    end block L1; 

end mylatch; 

In this example, the guard expression LE = '1' applies to all signal assignments that include the 
guarded keyword. (Guard expressions are placed in parentheses after the block keyword.) The signal 
assignments for Q and QBar therefore depend on the value of LE being '1'. When LE is not '1', the 
guarded signals hold their values. 

Notes 
If you need to access a signal that has been effectively hidden by a declaration of the same name, you 
can qualify the signal name with a block name prefix, as in BLOCK1.a or BLOCK1.b. 

 

Guarded blocks are not supported by all synthesis tools, so it is not recommended that you use them 
for designs intended for synthesis. Instead, you should use a process or subprogram to describe the 
behavior of registered or latched circuits. 
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Packages 
Packages are intended to hold commonly-used declarations such as constants, type declarations and 
global subprograms. Packages can be included within the same source file as other design units (such 
as entities and architectures) or may be placed in a separate source file and compiled into a named 
library. This latter method is useful when you will be using the contents of a package throughout a large 
design or in multiple projects. 

Packages may contain the following types of objects and declarations: 

• Type and subtype declarations 

• Constant declarations 

• File and alias declarations 

• Component declarations 

• Attribute declarations 

• Functions and procedures 

• Shared variables 
When items from the package are required in other design units, you must include a use statement to 
make the package and its contents visible for each design unit. 
The following is an example of a package declaration and its corresponding use statements: 

library ieee; 

use ieee.std_logic_1164.all; 

package my_types is 

    subtype byte is std_logic(0 to 7); 

    constant CLEAR: byte := (others=>'0'); 

end my_types; 

use work.mytypes.all; 

use ieee.std_logic_1164.all; 

entity rotate is 

    port(Clk, Rst, Load: in std_logic; 

            Data: in byte; 

            Q: out byte); 

end rotate; 

architecture rotate4 of rotate is 

    signal Qreg: byte; 

begin 

    Qreg <= Data when (Load = '1') else 

                  Qreg(1 to byte'LENGTH-1) & Qreg(0); 

    dff(Rst, Clk, Qreg, Q); 
end rotate4; 
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In this example, the package my_types includes declarations for a subtype (byte) and constant 
(CLEAR) that will be used throughout the subsequent design description. The statement use 
work.mytypes.all specifies that all contents of the package mytypes should be loaded from the 
default library (work). (The work library is a special library described in the VHDL specification as one 
that does not require a library statement and into which all design units are analyzed by default.)  An 
alternative to using the all keyword in the use statement would be to specify precisely which items in 
the default library are to be made visible, as in use work.mytypes.byte and use 
work.mytypes.CLEAR. 

How Are Packages Used? 
When you create your own VHDL design descriptions, you can use packages in a number of ways. 
First, you can dramatically simplify your designs by placing commonly-used declarations (such as 
byte and CLEAR in the previous example) into packages that are used throughout your project. You 
will probably find that using libraries to collect such packages in one place will simplify the design even 
further and make it easier to share commonly-used declarations between different design descriptions. 

Another way you can use packages is to reference pre-written packages that have been provided for 
you. One example of such a package is found in the IEEE 1164 Standard Logic standard. The IEEE 
1164 standard provides a standard package named std_logic_1164 that includes declarations for the 
types std_logic, std_ulogic, std_logic_vector and std_ulogic_vector, as well as many useful functions 
related to those data types. 

Packages may also be provided to you by vendors of synthesis and simulation tools. Synthesis tools, 
for example, often include packages containing synthesizable type conversion functions, synthesizable 
procedures for flip-flops and latches, and other useful design elements. 

Finally, there is a standard package that includes declarations for all the standard data types (bit, 
bit_vector, integer and so on). This standard package is defined by the IEEE 1076 standard and 
automatically made visible to all design units. (You do not have to specify a use clause for the standard 
package.) 

Package Bodies 
Packages that include global subprograms (functions or procedures) or deferred constants  must defer 
part of their declaration (the part that must be analyzed during simulation) to a separate design unit 
called a package body. Every package can have, at most, one corresponding package body. Package 
bodies are optional and are only required when a package includes subprograms or deferred 
constants. 

The following example shows how a package body must be used when a subprogram (in this case, a 
procedure describing the behavior of a D flip-flop) is declared in a package: 

package my_reg8 is 

    subtype byte8 is std_logic_vector(0 to 7); 

    constant CLEAR8: byte8 := (others=>'0'); 

    procedure dff8 (signal Rst, Clk: in std_logic; 

                              signal D: in byte; 

                              signal Q: out byte); 
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end my_reg8; 

package body my_reg8 is 

    procedure dff8 (signal Rst, Clk: in std_logic; 

                               signal D: in byte8; 

                               signal Q: out byte8) is 

    begin 

        if Rst = '1' then 

            Q <= CLEAR8; 
        elsif Clk = '1' and Clk'event then 

            Q <= D; 
        end if; 

    end dff; 

end my_reg8; 

In this example, the procedure dff8 is declared initially in the package my_reg8. This first declaration 
is somewhat akin to a "function prototype" as used in the C or C++ languages, and it defines the 
interface to the procedure. The package body that corresponds to package my_reg8 (and shares its 
name) contains the complete description of the procedure. 

Design libraries 
A design library is defined in the VHDL 1076 standard as "an implementation-dependent storage facility 
for previously analyzed design units". This rather loose definition has resulted in many different 
implementations in synthesis and simulation tools. In general, however, you will find that design 
libraries are used to collect commonly-used design units (typically packages and package bodies) into 
uniquely-named areas that can be referenced from multiple source files in your design. 

In a typical simulation environment, you will specify to the simulator the library into which you want 
each design unit compiled (or analyzed, to use the terminology of the VHDL standard). If you do not 
specify a library, the design units are compiled into a default library named work. 

For simple design descriptions (such as those that are completely represented within a single source 
file), you will use the work library exclusively and will not have to put much thought into how libraries 
are implemented in the set of tools you are using. When you use the work library exclusively, all you 
need to do is specify a use statement such as: 

use work.my_package.all; 

prior to each entity declaration in your design for each package that you have declared in your source 
file. (You do not have to place use statements prior to an architecture declaration if the corresponding 
entity declaration is preceded by a use statement.) 

If, however, you choose to use named libraries in your designs (and you are encouraged to do so, as it 
can dramatically improve your design productivity), then you should follow a few simple rules to avoid 
compatibility problems when moving between different simulation and synthesis environments. First, 
you should not use the work library to contain packages that are shared between design units located 
in different source files. Although some simulation environments allow previously-compiled contents of 
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the work library to be accessed at any time (such as during the separate compilation of a source file), 
this is not actually defined by the VHDL standard and may not work in other simulation and synthesis 
environments. 
Some synthesis and simulation tools actually define the work library to be only those design units that 
are included in the source file currently being compiled. This is a simple rule of usage and is the 
recommended use of work. 

To keep your use of libraries as simple as possible, it is recommended that you make consistent use of 
VHDL source file names and corresponding library file names, and avoid the use of work for all but the 
simplest packages. 

Package Visibility 
The library statement described in the previous section is used to load a library so that its contents are 
available when compiling a source file. However, the library statement does not actually make the 
contents of the specified library (the packages or other design units found in the library) visible to 
design units in the current source file. Visibility is created when you specify one or more use 
statements prior to the design units requiring access to items in the library. 
The use statement is quite flexible. You can specify exactly which items within a package are to be 
made visible, specify that all items in a package are to be made visible, or specify that all items in all 
packages for a specific library are to be made visible. The following examples demonstrate some of the 
possible uses of use statements: 

use mylib.my_package.all; -- All items in my_package are visible 

use mylib.my_package.dff; -- Just using the dff procedure 

use mylib.all;    -- Make everything in the library visible 

In general, you will find that it is most convenient to place a library statement (one for each external 
library being used) at the beginning of your source file, and place use statements just prior to those 
design units requiring visibility of items in the library. To prevent compatibility problems as described 
above, you should avoid using work for shared packages or other design units that cross source file 
boundaries. 
For clarity, it is recommended that you specify both the library and package name in your use 
statements, even if you are using all items in the library. 

Components 
Components are used to connect multiple VHDL design units (entity/architecture pairs) together to form 
a larger, hierarchical design. Using hierarchy can dramatically simplify your design description and can 
make it much easier to re-use portions of the design in other projects. Components are also useful 
when you want to make use of third-party design units, such as simulation models for standard parts, 
or synthesizable core models obtained from a company specializing in such models. 

The following describes the relationship between the three design units in a shift and compare design 
example: 

architecture structure of shiftcomp is 

    component compare 
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        port(A, B: in bit_vector(0 to 7); EQ: out bit); 

    end component; 

    component shift 

        port(Clk, Rst, Load: in bit; 

               Data: in bit_vector(0 to 7); 

               Q: out bit_vector(0 to 7)); 

    end component; 

    signal Q: bit_vector(0 to 7); 

begin 

    COMP1: compare port map (Q, Test, Limit); 

    SHIFT1: shift port map (Clk, Rst, Load, Init, Q); 

end structure; 

In this example, the two lower-level components (shift and compare) were instantiated in the higher-
level module (shiftcomp) to form a hierarchy of design units. Each component instantiation is 
represented by a component name that is unique within the architecture or block. 

Component instantiations are concurrent statements and therefore have no order-dependency. A 
design unit (such as this one) that includes only component instantiation statements can be thought of 
as a netlist, such as might be written (or generated) to represent the connections on a schematic. 

Mapping of Ports 
The previous example of component instantiation used positional association to describe how signals 
at the higher level (in this case shiftcomp) are to be matched with (i.e., connected to) ports of the 
entities in the lower-level modules (shift and compare). 

Positional association is a quick and convenient way to describe the mapping of signals to ports in a 
component instantiation, but it can be error-prone. Consider, for example, what would have happened 
if the component instantiation for the shift module had been written as follows: 

SHIFT1: shift port map (Rst, Clk, Load, Init, Q); 

Because the Rst and Clk signals are of the same type (std_logic), the simulator or synthesis tool 
would accept this port mapping without complaint, and it would connect the reset signal to the clock 
and connect the clock to the reset. The circuit would not operate as expected, and the problem might 
be difficult to debug. 

For this reason, it is generally recommend that you write component instantiations using an alternate 
form of port map called named association. Named association guarantees that the correct signals and 
ports are connected through the hierarchy, and it also gives you the ability to re-order the ports as 
needed. 

The following example shows how the same component (a NAND gate) might be instanced using both 
positional and named association: 

U1: nand2 port map (a, b, y);                  -- Positional association 

U2: nand2 port map (a=>in1,b=>in2,y=>out1);    -- Named association 



VHDL Language Reference 

TR0114 (v1.1) May 20, 2005 123 

The special operator => indicates exactly which lower-level ports (a, b and y, in this case) are to be 
connected to which higher-level signals (in1, in2 and out1). 

Named association also makes it possible to leave one or more lower-level ports unconnected using 
the keyword open, as shown below: 

U2: count8 port map (C => Clk1, Rst => Clr, L => Load, D => Data,  

                     Q => , Cin => open); 

Generics 
It is possible to pass instance-specific information other than actual port connections to an entity using 
a feature called generics. Generics are very useful for making design units more general-purpose or for 
annotating information (such as timing specifications) to an entity at the time the design is analyzed for 
simulation or synthesis. 

The following example shows how generics can be used to create a parameterized model of a D-type 
flip-flop: 

library ieee; 

use ieee.std_logic_1164.all; 

entity dffr is 

    generic (wid: positive); 

    port (Rst,Clk: in std_logic; 

          signal D: in std_logic_vector(wid-1 downto 0); 

          signal Q: out std_logic_vector(wid-1 downto 0)); 

end dffr; 

architecture behavior of dffr is 

begin 

    process(Rst,Clk) 

        variable Qreg: std_logic_vector(wid-1 downto 0); 

    begin 

        if Rst = '1' then 

            Qreg := (others => '0'); 

        elsif Clk = '1' and Clk'event then 

            for i in Qreg'range loop 

                Qreg(i) := D(i); 
            end loop; 

        end if; 

        Q <= Qreg; 
    end process; 

end behavior; 
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In this example, the dffr entity has a generic list in addition to a port list. This generic list contains one 
entry, a positive integer, that corresponds to the width of the D input and Q output. The architecture 
declaration uses a for loop in conjunction with the generic (wid) to describe the operation of the D-
type flip-flops. 

When instantiated in a higher-level design unit, a generic map must be provided in addition to the port 
map, as shown below: 

architecture sample of reg is 

    component dffr 

        generic (wid: positive); 

        port (Rst,Clk: in std_logic; 

              signal D: in std_logic_vector(wid-1 downto 0); 

              signal Q: out std_logic_vector(wid-1 downto 0)); 

    end component; 

    constant WID8: positive := 8; 

    constant WID16: positive := 16; 

    constant WID32: positive := 32; 

    signal D8,Q8: std_logic_vector(7 downto 0); 

    signal D16,Q16: std_logic_vector(15 downto 0); 

    signal D32,Q32: std_logic_vector(31 downto 0); 

begin 

    FF8:  dffr generic map(WID8)  port map(Rst,Clk,D8,Q8); 

    FF16: dffr generic map(WID16) port map(Rst,Clk,D16,Q16); 

    FF32: dffr generic map(WID32) port map(Rst,Clk,D32,Q32); 

end sample; 

The example shows how three instances of the dffr design unit can be created using different values 
for the generic. 

Notes 
When using named associations, it is a good idea to place each one on a separate line. This simplifies 
debugging because the debugger will identify the exact line where an association error occurred. 

Configurations 
Configurations are features of VHDL that allow large, complex design descriptions to be managed 
during simulation. One example of how you might use configurations is to construct two versions of a 
system-level design, one of which makes use of high-level behavioral descriptions of the system 
components, while a second version substitutes in a post-synthesis timing model of one or more 
components. 

A configuration declaration is a primary design unit that defines the binding of some or all of the 
component instances in your design description to corresponding lower-level entities and architectures. 
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The configuration declaration can form a simple parts list for your design, or it can be written to contain 
detailed information about how each component is "wired into" the rest of the design (through specific 
port mappings) and the values for generics being passed into each entity. 

If you think of the configuration declaration as a parts list for your design, you can perhaps visualize it 
better as follows: consider a design description in which you have described an entity named Board 
with an architecture named structure. In the architecture structure you have described one instance 
(U1) of a component called Chip. Moving down in the hierarchy of your design, let's suppose that the 
entity Chip has been written with four alternative architectures named A1, A2, A3 and A4. There are 
many reasons why you might have done this. For example, the default architecture might be the final 
synthesizable version of the chip, while the remaining three are versions intended strictly for high-level 
simulation. 

There are many applications of configurations in simulation. For large projects involving many 
engineers and many design revisions, configurations can be used to manage versions and specify how 
a design is to be configured for system simulation, detailed timing simulation, and synthesis. Because 
simulation tools allow configurations to be modified and recompiled without the need to recompile other 
design units, it is easy to construct alternate configurations of a design very quickly without having to 
recompile the entire design. 

Notes 
Configurations are not generally supported in synthesis tools. 
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Test Benches 
One of the primary reasons to use VHDL is its power as a test stimulus language. As logic designs 
become more complex, comprehensive, up-front verification becomes critical to the success of a 
design project. In fact, as you become proficient with simulation, you will quickly find that your VHDL 
simulator becomes your primary design development tool. When simulation is used right at the start of 
the project, you will have a much easier time with synthesis, and you will spend far less time re-running 
time-intensive processes, such as FPGA place-and-route tools and other synthesis-related software. 

To simulate your project, you will need to develop an additional VHDL program called a test bench. 
(Some VHDL simulators include a command line stimulus language, but these features are no 
replacement for a true test bench.) Test benches emulate a hardware breadboard into which you will 
"install" your synthesizable design description for the purpose of verification. Test benches can be quite 
simple, applying a sequence of inputs to the circuit over time. They can also be quite complex, perhaps 
even reading test data from a disk file and writing test results to the screen and to a report file. A 
comprehensive test bench can, in fact, be more complex and lengthy (and take longer to develop) than 
the synthesizable circuit being tested. As you will begin to appreciate, test bench development will be 
where you make use of the full power of VHDL and your own skills as a VHDL “coder”. 

Depending on your needs (and whether timing information related to your target device technology is 
available), you may develop one or more test benches to verify the design functionally (with no delays), 
to check your assumptions about timing relationships (using estimates or unit delays), or to simulate 
with annotated post-route timing information so you can verify that your circuit will operate in-system at 
speed. 

During simulation, the test bench will be the top level of a design hierarchy. To the simulator, there is 
no distinction between those parts of the design that are being tested and the test bench itself. 

When writing test benches, you will most likely use a broader range of language features. You may use 
records and multi-dimensional arrays to describe test stimuli, write loops, create subprograms to 
simplify repetitive actions, and/or use VHDL's text I/O features to read and write files of data. 

A simple test bench 
The simplest test benches are those that apply some sequence of inputs to the circuit being tested (the 
Unit Under Test, or UUT) so that its operation can be observed in simulation. Waveforms are typically 
used to represent the values of signals in the design at various points in time. Such a test bench must 
consist of a component declaration corresponding to the unit under test, and a description of the input 
stimulus being applied to the UUT. 

The following example demonstrates the simplest form of a test bench, and tests the operation of a 
NAND gate: 

library ieee;   -- Load the ieee 1164 library 

use ieee.std_logic_1164.all; -- Make the package 'visible' 

use work.nandgate;    -- We'll use the NAND gate model from 'work' 

-- The top level entity of the test bench has no ports... 

-- 
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entity testnand is 

end testnand; 

architecture stimulus of testnand is 

    -- First, declare the lower-level entity... 
    component nand 

        port  (A,B: in std_logic; 

               Y: out std_logic); 

    end component; 

    -- Next, declare some local signals to assign values to and observe... 
    signal A,B: std_logic; 

    signal Y: std_logic; 

begin 

    -- Create an instance of the comparator circuit... 
    NAND1: nandgate port map(A => A,B => B,Y => Y); 

    -- Now define a process to apply some stimulus over time... 
    process 

        constant PERIOD: time := 40 ns; 

    begin 

        A <= '1'; 

        B <= '1'; 
        wait for PERIOD; 

        assert (Y = '0') 

            report "Test failed!" severity ERROR; 

        A <= '1'; 

        B <= '0'; 
        wait for PERIOD; 

            assert (Y = '1') 

            report "Test failed!" severity ERROR; 

        A <= '0'; 

        B <= '1'; 
        wait for PERIOD; 

            assert (Y = '1') 

            report "Test failed!" severity ERROR; 

        A <= '0'; 

        B <= '0'; 
        wait for PERIOD; 
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            assert (Y = '1') 

            report "Test failed!" severity ERROR; 

        wait; 

    end process;    

end stimulus; 

Reading from the top of this test bench, the key areas of VHDL are: 
• Library and use statements making the standard logic package available for use (the lower-level 

NAND gate model has been described using standard logic). 
• An optional use statement referencing the lower-level design unit nand from the work library. 

• An entity declaration for the test bench. 

• An architecture declaration, containing: 

• A component declaration corresponding to the unit under test. 
• Signal declarations for A, B, and Y. These local signals will be used to (1) apply inputs to the unit 

under test, and (2) observe the behavior or the output during simulation. 
• A component instantiation statement and corresponding port map statement that associates the 

top-level signals A, B and Y with their equivalent ports in the lower-level entity. The component 
name used is not significant; any valid component name could have been chosen. 

• A process statement describing the inputs to the circuit over time. This process has been written 
without the use of a sensitivity list. It uses wait statements to provide a specific amount of delay 
(defined using constant PERIOD) between each new combination of inputs. Assert statements are 
used to verify that the circuit is operating correctly for each combination of inputs. Finally, a wait 
statement without any condition expression is used to suspend simulation indefinitely after the 
desired inputs have been applied. (In the absence of the final wait statement, the process would 
repeat forever, or for as long as the simulator had been instructed to run.) 

Notes 
Test benches do not generally include an interface (port) list, as they are the highest-level design unit 
when simulated. 

Using assert statements 
VHDL's assert statement provides a quick and easy way to check expected values and display 
messages from your test bench. An assert statement has the following general format: 

assert condition_expression 

    report text_string 

    severity severity_level ; 

When analyzed (either during execution as a sequential statement, or during simulator initialization in 
the case of a concurrent assert statement), the condition expression is evaluated. As in an if 
statement, the condition expression of an assert statement must evaluate to a boolean (true or false) 
value. If the condition expression is false (indicating the assertion failed), the text that you have 
specified in the optional report statement clause is displayed in your simulator's transcript (or other) 
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window. The severity statement clause then indicates to the simulator what action (if any) should be 
taken in response to the assertion failure (or assertion violation, to use the language of the VHDL 
specification). 

The severity level can be specified using one of the following predefined severity levels: NOTE, 
WARNING, ERROR, or FAILURE. The actions that result from the use of these severity levels will 
depend on the simulator you are using, but you can generally expect the simulator to display a file 
name and line number associated with the assert statement, keep track of the number of assertion 
failures, and print a summary at the end of the simulation run. Assert statements that specify FAILURE 
in their severity statement clauses will normally result in the simulator halting. 

Displaying complex strings in assert statements 
A common use of assert and report statements is to display information about signals or variables 
dynamically during a simulation run. Unfortunately, VHDL's built-in support for this is somewhat limited. 
The problem is twofold: first, the report clause only accepts a single string as its argument, so it is 
necessary to either write multiple assert statements to output multiple lines of information (as when 
formatting and displaying a table), or you must make use of the string concatenation operator & and 
the special character constant CR (carriage return) and/or LF (line feed) to describe a single, multi-line 
string as shown below: 

assert false 

    report "This is the first line of the message." & CR & LF & 

               "This is the second line of the message."; 

The second, more serious limitation of the report statement clause is that it only accepts a string, and 
there is no built-in provision for formatting various types of data (such as arrays, integers and the like) 
for display. This means that to display such data in an assert statement, you must provide type 
conversion functions that will convert from the data types you are using to a formatted string. The 
following example demonstrates how you might write a conversion function to display a 
std_logic_vector array value as a string of characters: 

architecture stimulus of testfib is 

    . . . 
    function vec2str(vec: std_logic_vector) return string is 

    variable stmp: string(vec'left+1 downto 1); 

    begin 

        for i in vec'reverse_range loop 

            if (vec(i) = 'U') then 

                stmp(i+1) := 'U'; 
            elsif (vec(i) = 'X') then 

                stmp(i+1) := 'X';  
            elsif (vec(i) = '0') then 

                stmp(i+1) := '0';  
            elsif (vec(i) = '1') then 
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                stmp(i+1) := '1';  
            elsif (vec(i) = 'Z') then 

                stmp(i+1) := 'Z';  
            elsif (vec(i) = 'W') then 

                stmp(i+1) := 'W';  
            elsif (vec(i) = 'L') then 

                stmp(i+1) := 'L';  
            elsif (vec(i) = 'H') then 

                stmp(i+1) := 'H';  
            else 

                stmp(i+1) := '-'; 
            end if; 

        end loop; 

    return stmp; 

    end; 

    . . . 
    signal S: std_logic_vector(15 downto 0); 

    signal S_expected: std_logic_vector(15 downto 0); 

 begin 

    . . . 
    process 

    begin 

        . . . 
        assert (S /= S_expected)   -- report an error if different 

                    report "Vector failure!" & CR & LF &  

                    "Expected S to be  " & vec2str(S_expected) & CR & LF & 

                    "but its value was " & vec2str(S) 
                    severity ERROR; 

In this example, a type conversion function has been written (vec2str) that converts an object of type 
std_logic_vector to a string of the appropriate format and size for display. As you develop more 
advanced test benches, you will probably find it useful to collect such type conversion functions into a 
library for use in future test benches. 

Using loops and multiple processes 
Test benches can be dramatically simplified through the use of loops, constants and other more 
advanced features of VHDL. Using multiple concurrent processes in combination with loops can result 
in very concise descriptions of complex input and expected output conditions. 



VHDL Language Reference 

TR0114 (v1.1) May 20, 2005 131 

The following example demonstrates how a loop (in this case a while loop) might be used to create a 
background clock in one process, while other loops (in this case for loops) are used to apply inputs 
and monitor outputs over potentially long periods of time: 

    Clock1: process 

        variable clktmp: std_logic := '1'; 

    begin     

        while done /= true loop 

            wait for PERIOD/2; 

            clktmp := not clktmp; 

            Clk <= clktmp; 
        end loop; 

        wait; 

    end process; 

    Stimulus1: Process 

    Begin 

        Reset <= '1'; 
        wait for PERIOD; 

        Reset <= '0'; 

        Mode <= '0'; 
        wait for PERIOD; 

        Data <= (others => '1'); 

        wait for PERIOD; 

        Mode <= '1'; 

        -- Check to make sure we detect the vertical sync... 
        Data <= (others => '0'); 

        for i in 0 to 127 loop 

            wait for PERIOD; 

            assert (VS = '1') 

                report "VS went high at the wrong place!" severity ERROR; 

        end loop; 

        assert (VS = '1') 

             report "VS was not detected!" severity ERROR; 

        -- Load in the test counter value to check the end of frame 
detection... 

        TestLoad <= '1'; 
        wait for PERIOD; 

        TestLoad <= '0'; 
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        for i in 0 to 300 loop 

            Data <= RandomData(); 
            wait for PERIOD; 

        end loop; 

        assert (EOF = '1') 

             report "EOF was not detected!" severity ERROR; 

        done <= true; 
        wait; 

    End Process; 

End stimulus; 

In this example, the process labeled Clock1 uses a local variable (clktmp) to describe a repeating 
clock with a period defined by the constant PERIOD. This clock is described with a while loop 
statement, and it runs independent of all other processes in the test bench until the done signal is 
asserted true. The second process, Stimulus1, describes a sequence of inputs to be applied to the 
unit under test. It also makes use of loops – in this case for loops – to describe lengthy repeating 
stimuli and expected value checks. 

Writing test vectors 
Another approach to creating test stimuli is to describe the test bench in terms of a sequence of fixed 
input and expected output values. This sequence of values (sometimes called test vectors) could be 
described using multi-dimensional arrays or using arrays of records. The following example makes use 
of a record data type, test_record, which consists of the record elements CE, Set, Din and 
CRC_Sum. An array type (test_array) is then declared, representing an unconstrained array of 
test_record type objects. The constant test_vectors, of type test_array, is declared and 
assigned values corresponding to the inputs and expected output for each desired test vector. 
The test bench operation is described using a for loop within a process. This for loop applies the input 
values Set and Din (from the test record corresponding to the current iteration of the loop) to the unit 
under test. (The CE input is used within the test bench to enable or disable the clock, and is not passed 
into the unit under test.) After a certain amount of time has elapsed (as indicated by a wait statement), 
the CRC_Sum record element is compared against the corresponding output of the unit under test, 
using an assert statement.  

library ieee; 

use ieee.std_logic_1164.all; 

use work.crc8s;    -- Get the design out of library 'work' 

entity testcrc is 

end testcrc; 

architecture stimulus of testcrc is 

    component crc8s 

        port (Clk,Set,Din: in std_logic; 
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              CRC_Sum: out std_logic_vector(15 downto 0)); 

    end component; 

    signal CE: std_logic; 

    signal Clk,Set: std_logic; 

    signal Din: std_logic; 

    signal CRC_Sum: std_logic_vector(15 downto 0); 

    signal vector_cnt: integer := 1; 

    signal error_flag: std_logic := '0'; 

    type test_record is record -- Declare a record type 

        CE: std_logic; -- Clock enable 

        Set: std_logic;  -- Register preset signal 

        Din: std_logic;  -- Serial Data input 
        CRC_Sum: std_logic_vector (15 downto 0);   -- Expected result 

    end record; 

    type test_array is array(positive range <>) of test_record; -- Collect 
them  

-- in an array 

    -- The following constant declaration describes the test vectors to be 

    -- applied to the design during simulation, and the expected result 
after a 

    -- rising clock edge. 
    constant test_vectors : test_array := ( 

         -- CE, Set, Din, CRC_Sum     

('0', '1', '0', "----------------"),  -- Reset 

('1', '0', '0', "----------------"),  -- 'H' 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '0', "0010100000111100"),  -- x283C 

('1', '0', '0', "----------------"),  -- 'e' 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '0', "----------------"), 
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('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '1', "1010010101101001"),  -- xA569 

('1', '0', '0', "----------------"),  -- 'l' 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '0', "0010000101100101"),  -- x2165 

('1', '0', '0', "----------------"),  -- 'l' 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '0', "1111110001101001"),  -- xFC69 

('1', '0', '0', "----------------"),  -- 'o' 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '0', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '1', "----------------"), 

('1', '0', '1', "1101101011011010")   -- xDADA 

    ); 
begin 

    -- instantiate the component 
    UUT: crc8s port map(Clk,Set,Din,CRC_Sum); 

    -- provide stimulus and check the result 
    testrun: process 

        variable vector : test_record; 

    begin 

        for index in test_vectors'range loop 
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             vector_cnt <= index; 

             vector := test_vectors(index); -- Get the current test vector 

-- Apply the input stimulus... 

             CE <= vector.CE; 

             Set <= vector.Set; 

             Din <= vector.Din; 

        -- Clock (low-high-low) with a 100 ns cycle... 

             Clk <= '0'; 
             wait for 25 ns; 

             if CE = '1' then 

                 Clk <= '1'; 
             end if; 

             wait for 50 ns; 

             Clk <= '0'; 
             wait for 25 ns; 

        -- Check the results... 
             if (vector.CRC_Sum /= "----------------" 

                    and CRC_Sum  /= vector.CRC_Sum) then 

                error_flag <= '1'; 
                assert false 

                    report "Output did not match!" 

                    severity WARNING; 

            else 

                error_flag <= '0'; 
            end if; 

        end loop; 

        wait; 

    end process; 

end stimulus; 

Notes 
VHDL 1076-1993 broadened the scope of bit string literals somewhat, making it possible to enter 
std_logic_vector data in non-binary forms as in the constant hexadecimal value x"283C". 
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Reading and writing files with text I/O 
The text I/O features of VHDL make it possible to open one or more data files, read lines from those 
files, and parse the lines to form individual data elements, such as elements in an array or record. To 
support the use of files, VHDL has the concept of a file data type, and includes standard, built-in 
functions for opening, reading from, and writing to file data types. The textio package, which is 
included in the standard library, expands on the built-in file type features by adding text parsing and 
formatting functions, functions and special file types for use with interactive (“std_input” and 
“std_output”) I/O operations, and other extensions. 

The following example demonstrates how you can use the text I/O features of VHDL to read test data 
from an ASCII file, using the standard text I/O features. 

-- Test bench, VHDL '93 style 

-- 
library ieee; 

use ieee.std_logic_1164.all; 

use std.textio.all; 

use work.fib;    -- Get the design out of library 'work' 

entity testfib is 

end entity testfib; 

architecture stimulus of testfib is 

    component fib is 

       port (Clk,Clr: in std_logic; 

             Load: in std_ulogic; 

             Data_in: in std_ulogic_vector(15 downto 0); 

             S: out std_ulogic_vector(15 downto 0)); 

    end component fib; 

    function str_to_stdvec(inp: string) return std_ulogic_vector is 

        variable temp: std_ulogic_vector(inp'range) := (others => 'X'); 

    begin  

        for i in inp'range loop 

            if (inp(i) = '1') then 

                temp(i) := '1'; 
            elsif (inp(i) = '0') then 

                temp(i) := '0';  
            end if; 

        end loop; 

        return temp; 

    end function str_to_stdvec; 
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    function stdvec_to_str(inp: std_ulogic_vector) return string is 

        variable temp: string(inp'left+1 downto 1) := (others => 'X'); 

    begin 

        for i in inp'reverse_range loop 

            if (inp(i) = '1') then 

                temp(i+1) := '1'; 
            elsif (inp(i) = '0') then 

                temp(i+1) := '0';  
            end if; 

        end loop; 

        return temp; 

    end function stdvec_to_str; 

    signal Clk,Clr: std_ulogic; 

    signal Load: std_ulogic; 

    signal Data_in: std_ulogic_vector(15 downto 0); 

    signal S: std_ulogic_vector(15 downto 0); 

    signal done: std_ulogic := '0'; 

    constant PERIOD: time := 50 ns; 

begin 

    UUT: fib port map(Clk=>Clk,Clr=>Clr,Load=>Load, 

                      Data_in=>Data_in,S=>S); 
    Clock: process 

        variable c: std_ulogic := '0'; 

    begin 

        while (done = '0') loop 

            wait for PERIOD/2; 

            c := not c; 

            Clk <= c; 
        end loop; 

    end process Clock;   

    Read_input: process    

        file vector_file: text; 

        variable stimulus_in: std_ulogic_vector(33 downto 0); 

        variable S_expected: std_ulogic_vector(15 downto 0); 

        variable str_stimulus_in: string(34 downto 1); 

        variable err_cnt: integer := 0; 
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        variable file_line: line; 

    begin 

        file_open(vector_file,"tfib93.vec",READ_MODE); 
        wait until rising_edge(Clk); 

        while not endfile(vector_file) loop 

            readline (vector_file,file_line); 

            read (file_line,str_stimulus_in) ; 
            assert false 

                report "Vector: " & str_stimulus_in 

                severity note; 

            stimulus_in := str_to_stdvec (str_stimulus_in); 
            wait for 1 ns; 

            --Get input side of vector... 

            Clr <= stimulus_in(33); 

            Load <= stimulus_in(32); 
            Data_in <= stimulus_in(31 downto 16); 

            --Put output side (expected values) into a variable... 
            S_expected := stimulus_in(15 downto 0); 

            wait until falling_edge(Clk); 

            -- Check the expected value against the results... 
            if (S /= S_expected) then 

                err_cnt := err_cnt + 1; 
                assert false 

                    report "Vector failure!" & lf & 

                    "Expected S to be  " & stdvec_to_str(S_expected) & lf & 

                    "but its value was " & stdvec_to_str(S) & lf 
                    severity note; 

            end if; 

        end loop; 

        file_close(vector_file); 

        done <= '1'; 
        if (err_cnt = 0) then 

            assert false 

                report "No errors." & lf & lf 

                severity note; 

        else  
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            assert false 

                report "There were errors in the test." & lf 

                severity note; 

        end if; 

        wait; 

    end process Read_input; 

end architecture stimulus; 

-- Add a configuration statement. This statement actually states the  

-- default configuration, and so it is optional. 
configuration build1 of testfib is 

    for stimulus 

        for DUT: fib use entity work.fib(behavior) 

            port map(Clk=>Clk,Clr=>Clr,Load=>Load, 

                      Data_in=>Data_in,S=>S); 
        end for; 

    end for; 

end configuration build1; 

This test bench reads lines from an ASCII file and applies the data contained in each line as a test 
vector to stimulate and test a simple Fibonacci sequence generator circuit. It begins with the by-now-
familiar entity-architecture pair: 

This test bench reads files of text “dynamically” during simulation, so the test bench does not have to 
be recompiled when test stimulus is added or modified. This is a big advantage for very large designs. 

What does the test vector file that this test bench reads look like? The following example file content 
describes one possible sequence of tests that could be performed using this test bench: 

1000000000000000000000000000000000 

0000000000000000000000000000000001 

0000000000000000000000000000000001 

0000000000000000000000000000000010 

0000000000000000000000000000000011 

0000000000000000000000000000000101 

0000000000000000000000000000001000 

0000000000000000000000000000001101 

0000000000000000000000000000010101 

0000000000000000000000000000100010 

0000000000000000000000000000110111 

0000000000000000000000000001011001 

0000000000000000000000000010010000 
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0000000000000000000000000011101001 

0000000000000000000000000101111001 

0000000000000000000000001001100010 

0000000000000000000000001111011011 

0000000000000000000000011000111101 

0000000000000000000000101000011000 

0000000000000000000001000001010101 

0000000000000000000001101001101101 

0000000000000000000010101011000010 

0000000000000000000100010100101111 

0000000000000000000110111111110001 

0000000000000000001011010100100000 

0000000000000000000010010100010001 

0000000000000000000000000000000001 

0000000000000000000000000000000001 

0000000000000000000000000000000010 

0000000000000000000000000000000011 

0000000000000000000000000000000101 

0000000000000000000000000000001000 

This file could have been entered manually, using a text editor. Alternatively, it could have been 
generated from some other software package or from a program written in C, Basic or any other 
language. Reading text from files opens many new possibilities for testing and for creating interfaces 
between different design tools. 

Reading Non-tabular Data from Files 
You can use VHDL's text I/O features to read and write many different built-in data types, including 
such data types as characters, strings, and integers. This is a powerful feature of the language that you 
will make great use of as you become proficient with the language. 

VHDL's text I/O features are somewhat limited, however, when it comes to reading data that is not 
expressed as one of the built-in types defined in Standard 1076. The primary example of this is when 
you wish to read or write standard logic data types. In the previous example (the Fibonacci sequence 
generator), type conversion functions were used to read standard logic input data as characters. This 
method works fine, but it is somewhat clumsy. A better way to approached this common problem is to 
develop a reusable package of functions for reading and writing standard logic data. Writing a 
comprehensive package of such functions is not a trivial task. It would probably require a few days of 
coding and debugging. 
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VHDL Keywords 
The following is a list of all keywords that exist in the standard VHDL language. 

Keywords 
Keyword: ABS 

Keyword: ACCESS 

Keyword: AFTER 

Keyword: ALIAS 

Keyword: ALL 

Keyword: AND 

Keyword: ARCHITECTURE 

Keyword: ARRAY 

Keyword: ASSERT 

Keyword: ATTRIBUTE 

Keyword: BEGIN 

Keyword: BLOCK 

Keyword: BODY 

Keyword: BUFFER 

Keyword: BUS 

Keyword: CASE 

Keyword: COMPONENT 

Keyword: CONFIGURATION 

Keyword: CONSTANT 

Keyword: DISCONNECT 

Keyword: DOWNTO 

Keyword: ELSE 

Keyword: ELSIF 

Keyword: END 

Keyword: ENTITY 

Keyword: EXIT 

Keyword: FILE 

Keyword: FOR 

Keyword: FUNCTION 

Keyword: GENERATE 

Keyword: GENERIC 

Keyword: GROUP 
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Keyword: GUARDED 

Keyword: IF 

Keyword: IMPURE 

Keyword: IN 

Keyword: INERTIAL 

Keyword: INOUT 

Keyword: IS 

Keyword: LABEL 

Keyword: LIBRARY 

Keyword: LINKAGE 

Keyword: LITERAL 

Keyword: LOOP 

Keyword: MAP 

Keyword: MOD 

Keyword: NAND 

Keyword: NEW 

Keyword: NEXT 

Keyword: NOR 

Keyword: NOT 

Keyword: NULL 

Keyword: OF 

Keyword: ON 

Keyword: OPEN 

Keyword: OR 

Keyword: OTHERS 

Keyword: OUT 

Keyword: PACKAGE 

Keyword: PORT 

Keyword: POSTPONED 

Keyword: PROCEDURE 

Keyword: PROCESS 

Keyword: PURE 

Keyword: RANGE 

Keyword: RECORD 

Keyword: REGISTER 

Keyword: REJECT 
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Keyword: REM 

Keyword: REPORT 

Keyword: RETURN 

Keyword: ROL 

Keyword: ROR 

Keyword: SELECT 

Keyword: SEVERITY 

Keyword: SHARED 

Keyword: SIGNAL 

Keyword: SLA 

Keyword: SLL 

Keyword: SRA 

Keyword: SRL 

Keyword: SUBTYPE 

Keyword: THEN 

Keyword: TO 

Keyword: TRANSPORT 

Keyword: TYPE 

Keyword: UNAFFECTED 

Keyword: UNITS 

Keyword: UNTIL 

Keyword: USE 

Keyword: VARIABLE 

Keyword: WAIT 

Keyword: WHEN 

Keyword: WHILE 

Keyword: WITH 

Keyword: XNOR 

Keyword: XOR 
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Keyword: ABS 
The abs keyword is an absolute value operator which can be applied to any numeric type in an 
expression. 

Example 
Delta <= abs(A-B) 

Keyword: ACCESS 
The access keyword declares an access subtype.  Access subtypes are used like pointers to refer to 
other objects.  The objects which an access subtype can reference are array objects, record objects, 
and scalar type objects. 
An access declaration includes the reserved word access, followed by a subtype. 

Example 
type AddressPtr is access RAM; 

Keyword: AFTER 
The after keyword is used in signal assignment statements to indicate a delay value before a signal 
assignment takes place. 
A signal assignment statement containing an after clause includes – in this order – the name of the 
signal object, the reserved signal assignment symbol “<=“, the optional keyword “transport”, an 
expression specifying the value to be assigned to the signal, the reserved word “after”, and the delay 
value (of type “time”) after which the signal assignment is to take place. 
If no after clause is present in a signal assignment statement, an implicit “after 0ns” clause is 
assumed. 

Example 
Clk <= not Clk after 50 ns; 

... 
Waveform <= transport '1' after 100 ps; 

Keyword: ALIAS 
An alias is an alternate name for an object.  An alias is primarily used to create a slice (a one-
dimensional array referring to all or part) of an existing array.  An alias is not a new object, but only an 
alternate name for all or part of an existing object. 

Example 
alias LOWBYTE  :std_logic_vector(7 downto 0) is Data1(7 downto 0); 

... 
alias HIGHBYTE  :std_logic_vector(7 downto 0) is Data1(15 downto 8); 
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Keyword: ALL 
The all keyword is used in the following ways: 

• in a use statement, to make all the items in a package visible, 

• in an attribute specification, to refer to all the names in a name class, 

• in a configuration specification (for) statement, to refer to all instances of a component, and 

• in a signal disconnection specification, to refer to all signal drivers of the same type. 

Example 
use ieee_std_logic_1164.all; 

... 
for DUT: compare use entity work.compare(compare1); 

Keyword: AND 
The and keyword represents a logical “and” operator which can be used in an expression.  The 
expression “A and B” returns true only if both A and B are true. 

Example 
while error_flag /= '1'  and done /= '1' loop 

Keyword: ARCHITECTURE 
The architecture keyword defines the internal details of a design entity. 

An architecture body defines the relationships between the input and output elements of the entity.  An 
architecture body consists of a series of concurrent statements.  An architecture body can also include 
processes, functions, and procedures, each of which may include sequential statements.  Although the 
statements inside a process, for example, are executed sequentially, the process itself is treated within 
the architecture body as a concurrent statement. 

A given architecture can be associated with only one entity.  However, a given entity may have more 
than one architecture body. 
An architecture statement includes – in this order – the following: 

• the reserved word “architecture”, followed by : 

(a)  the name of the architecture,  
(b)  the reserved word “of”, 
(c)  the entity name, and  
(d)  the reserved word “is”, 

• a declarations section,  
• the reserved word “begin”, 

• the architecture body (a series of concurrent statements as described above), and  
• the reserved word “end”, followed optionally by the name of the architecture from (1)(a) above. 
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Example 
architecture sample_architecture of compare is 

begin 

GT <= '1' when A > B else '0'; 

LT <= '1' when A < B else '0'; 

EQ <= '1' when A = B else '0'; 

end sample_architecture; 

Keyword: ARRAY 
The array keyword is used to declare an array data type. An array is an object containing a collection 
of elements that are all of the same type. 

An array can be either constrained or unconstrained.  A constrained array is defined with an index 
defining the number of array elements.  In an unconstrained array, the number of elements in the array 
is specified in the array's object declaration, or the index definition for the array may be given in a 
subtype declaration.  Arrays may be one-dimensional (single index) or multi-dimensional (multiple 
indices). 

An array definition includes – in this order – the following: 
• the reserved word “array”, followed by a definition(s) of the elements in the array, and 

• the reserved word “of”, followed by the subtype of the array's elements. 

Example 
type DataWord is array (15 downto 0) of DataBit;   

--Constrained 

... 
type BigWord is array (integer range <>) of DataBit;   

 Unconstrained 

Keyword: ASSERT 
The assert keyword indicates the beginning of an assert statement. An assert statement checks to see 
if a given condition is true and, if the statement is not true, performs some action. 

An assert statement includes two options, either or both of which may be used: 
• report – which displays a user-defined message if the given condition is false, and  

• severity – which allows the user to choose a severity level if the given condition is false. 

The four possible severity levels are:  Note, Warning, Error, and Failure.  The value of severity is 
typically used to control the actions of a simulation in the event the given condition is false.  For 
example, a severity level of Failure may be used to stop the simulation. 

Example 
assert (S = S_expected) 
report "S does not match the expected value!" 
severity Error; 
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Keyword: ATTRIBUTE 
An attribute specification describes a characteristic of a given object.  An attribute is most often used 
to get additional information about an object.  For example, an attribute may be used to find the width 
of an array or to determine if a signal is in transition (i.e., has an event occurring on it). 
if Clk'event then... 

... 

W = Data'width; 

An attribute can be a constant, function, range, signal, type, or value.  User-defined attributes are 
always constants, no matter what type.  The other five possibilities – function, range, signal, type, and 
value – are pre-defined attributes. 
An attribute declaration is used to declare an attribute name and its type.  It includes – in this order – 
the reserved word “attribute”, the name of the attribute, and the attribute's type. 
attribute enum_encoding: string; 

An attribute specification assigns a value to the attribute.  It includes – in this order – the reserved word 
“attribute”, the attribute's name, the reserved word “of”, an item name (which can be an architecture, 
component, configuration, constant, entity, function, label, package, procedure, signal, subtype, type, 
or variable), the name class of the item (e.g., architecture, component, configuration, etc.), the 
reserved word “is”, and an expression. 

Example 
attribute enum_encoding of StateReg is 

"0001 0011 0010 0110 0100 1100 1000"; 

Notes 
An attribute name must be declared in an attribute declaration before it can be used in an attribute 
specification. 

Keyword: BEGIN 
The begin keyword specifies the start of the main body of statements in an architecture, function, 
procedure, process or block. 

Example 
architecture example of control_stmts is 

begin 

    m <= b when a else  c; 

end example; 
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Keyword: BLOCK 
Block is a concurrent statement used to represent a portion of a design.  Block statements may also 
include an optional Guard feature which allows the user to disable signal drivers within the block when 
a specified Guard condition is false. 

A block statement includes – in this order – the following: 

• block label, 
• the reserved word “block”, 
• optionally, a Boolean guard expression (for example, TESTCOUNT<5), 

• a block header, which specifies the interface of the block with its environment, 

• a block declarations section, 
• the reserved word “begin”, 

• the block statements, and 
• the reserved words “end block”, optionally followed by the block label (which, if used, must be the 

same as the block label declared above). 

When a guard expression is used, a signal driver can be disabled by inserting the reserved word 
“guarded” at the beginning of the right side of the signal driver statement.  For example, based on the 
example in (3) above, the block statement: 

SAMPLE <= guarded D; 

will cause the signal SAMPLE to take on the value of D only when TESTCOUNT<5.  Otherwise, no action 
on that assignment statement will be taken. 

Example 
TESTPARITY: block 

    signal Atmp,Btmp;  -- Local signals 

begin 

    Atmp <= gen_parity(A); 

    Btmp <= gen_parity(B); 
    ParityEQ <= '1' when Atmp = Btmp else '0'; 

end block TESTPARITY; 
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Keyword: BODY 
The body keyword is used in conjunction with the package keyword to declare a package body. A 
package body specifies the definitions of the various subprograms (components, functions, etc.) that 
are declared by its associated package declaration. 

The package body must have the same name as the package declaration.  Only one package body 
can be associated with each package declaration. 

Example 
package body conversions is 

    function to_unsigned (a: std_ulogic_vector) return 

         integer is 

         ... 
    begin 

         ... 
    end to_unsigned; 

    function to_vector (size: integer; num: integer) return  

         std_ulogic_vector is 

         ... 
    begin 

         ... 
    end to_vector; 

end conversions; 

Keyword: BUFFER 
Buffer is one of five possible modes for an interface port.  (The other four are in, out, inout, and 
linkage.)  The buffer mode indicates a port which can be used for both input and output, and it can 
have only one source.  A buffer port can only be connected to another buffer port or to a signal that 
also has only one source. 

Example 
entity ent5 is 

  port (clk,reset : in std_logic;   

     p : buffer std_logic_vector(1 downto 0)); 

end ent5 ; 
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Keyword: BUS 
Bus specifies one of two kinds of signals used in a signal declaration (the other is register).  A bus 
signal represents a hardware bus and defaults to a user-specified value when all of the signal's drivers 
are turned off. 

Example 
entity tbuf is 

   port (enable: boolean; a: bundle; m: out bundle bus); 

end tbuf; 

Keyword: CASE 
Case is a sequential statement used within a process, procedure or function that selects and executes 
one statement sequence among a list of alternatives, based on the value of a given expression.  The 
expression must be of a discrete type or a one-dimensional array type. 
A case statement includes – in this order – the following: 

• the reserved word “case”, 

• the expression to be evaluated, 
• the reserved word “is”, 

• the reserved word “when” followed by a choice and the sequence of statements to be executed if 
the expression evaluates to be that choice, 

• optionally, subsequent “when” statements similar to above, 

• optionally, the reserved words “when others” followed by the sequence of statements to be 
executed if the expression evaluates to be any value other than those specified in the “when” 
statements above,  

• the reserved words “end case”. 

Because the case statement chooses one and only one alternative for execution, all possible values for 
the expression must be covered in “when” statements. 

A case statement is distinguished from a chain of if-then-else statements in that no priority is implied 
for the conditions specified. 

Example 
case current_state is 

     when IDLE => 

       if start_key = '1' then 

       current_state <= READ0; 
       end if; 

     when READ0 => 

       current_state <= READ1; 
     when READ1 => 
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       current_state <= READX; 
     when READX => 

       current_state <= WRITE0; 
     when WRITE0 => 

       current_state <= WRITEX; 
     when WRITEX => 

       current_state <= IDLE; 
end case; 

Keyword: COMPONENT 
A component declaration is used to define the interface to a lower-level design entity.  The component 
may then be included in a component instantiation statement which itself is included in an architecture 
body, thus allowing one entity to be used as part of another entity.  The component declaration must 
be placed in the declaration section of the architecture body, or in a package visible to the architecture. 

Example 
component my_adder 

    port(A,B,Cin: in std_ulogic;  

            Sum,Cout: out std_ulogic); 

end component; 

Keyword: CONFIGURATION 
A declaration used to create a configuration for an entity.  A configuration declaration for a given 
entity binds one architecture body to the entity and can bind components of architecture bodies within 
that entity to other entities. In a given configuration declaration for an entity, only one architecture body 
can be bound to that entity.  However, one entity can have many configurations. 

Example 
configuration this_build of adder is 

use work.all; 

for structure 

  for A1,A2,A3: AddBlock 

    use entity FullAdd(behavior); 

  end for; 

end for; 

end this_build; 
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Keyword: CONSTANT 
The constant keyword declares a constant of a type specified in the constant declaration. 

A constant declaration includes – in this order – the reserved word “constant”, the name of the 
constant, the optional reserved word “in”, the type of the constant, and, optionally, an expression for 
the value of the constant. 

If an expression for the value of the constant is not included in the constant declaration, then the 
constant is referred to as a deferred constant.  A deferred constant may only be included in a package 
declaration, while the complete constant declaration, including the expression which defines its value, 
must be included in the package body. 

Example 
constant RESET: std_ulogic_vector(7 downto 0) := "00000000"; 

... 
constant PERIOD: time := 80 ns; 

Keyword: DISCONNECT 
The disconnect keyword specifies the time delay to disconnect the guarded feature of a signal which 
is part of a guarded signal statement. 
A disconnect statement includes – in this order – the reserved word “disconnect”, the name of the 
guarded signal, the guarded signal's type, the reserved word “after”, and a time expression specifying 
the time after which the guard feature should be disconnected.  
In place of the guarded signal's name, the reserved words “others” or “all” may be used.  “Others” 
refers to all other signal statements in the immediately enclosing declarative region which have not 
been specified in a separate disconnect statement.  “All” refers to all other signal statements in the 
declarative region. 

Example 
architecture sample_architecture of test1 is 

signal input_data_bus : resolved_word bus; 

disconnect input_data_bus : resolved_word after 6ns; 

begin 

... 
end sample_architecture; 

Notes 
A given signal driver can have only one disconnect statement. 
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Keyword: DOWNTO 
The downto keyword is used to indicate a descending range in a range statement or other statement 
which includes a range (for example, an array type declaration).  (The reserved word “to” is used to 
indicate an ascending range.) 

Example 
signal A0,A1: std_logic_vector(15 downto 0); 

Keyword: ELSE 
The else keyword is used to identify the final alternative in an if or when statement. 

Example 
if A > B then 

    Compare <= GT; 
elsif A < B then 

    Compare <= LT; 
else 

    Compare <= EQ; 
end if; 

Keyword: ELSIF 
The elsif keyword is used to identify an interim alternative in an if statement. 

Example 
if A > B then 

    Compare <= GT; 
elsif A < B then 

    Compare <= LT; 
else 

    Compare <= EQ; 
end if; 
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Keyword: END 
The end keyword specifies the end of an architecture, configuration, entity, function, package, package 
body or procedure. 

Example 
architecture sample_architecture of compare is 

begin 

GT <= '1' when A > B else '0'; 

LT <= '1' when A < B else '0'; 

EQ <= '1' when A = B else '0'; 

end sample_architecture; 

Notes 
The end keyword is also used in conjunction with other keywords to signify the end of a specific 
declaration or statement. The following sections illustrate examples of such usage: 

END BLOCK 
TESTPARITY: block 

    signal Atmp,Btmp;  -- Local signals 

begin 

    Atmp <= gen_parity(A); 

    Btmp <= gen_parity(B); 
    ParityEQ <= '1' when Atmp = Btmp else '0'; 

end block TESTPARITY; 

END CASE 
case current_state is 

     when IDLE => 

       if start_key = '1' then 

       current_state <= READ0; 
       end if; 

     when READ0 => 

       current_state <= READ1; 
     when READ1 => 

       current_state <= READX; 
     when READX => 

       current_state <= WRITE0; 
     when WRITE0 => 

       current_state <= WRITEX; 
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     when WRITEX => 

       current_state <= IDLE; 
end case; 

END COMPONENT 
component my_adder 

    port(A,B,Cin: in std_ulogic;  

            Sum,Cout: out std_ulogic); 

end component; 

END FOR 
configuration build1 of testfib is 

    for stimulus 

        for DUT: fib use entity work.fib(behavior) 

            port map(Clk=>Clk,Clr=>Clr,Load=>Load, 

                      Data_in=>Data_in,S=>S); 
        end for; 

    end for; 

end configuration build1; 

END GENERATE 
G: for I in 0 to (WIDTH - 2) generate 

    -- This generate statement creates the first  

    -- XOR gate in the series... 
    G0: if I = 0 generate 

        X0: xor2 port map(A => D(0), B => D(1), Y => p(0)); 

    end generate G0; 

    -- This generate statement creates the middle  

    -- XOR gates in the series... 
    G1: if I > 0 and I < (WIDTH - 2) generate 

        X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i)); 

    end generate G1; 

    -- This generate statement creates the last  

    -- XOR gate in the series... 
    G2: if I = (WIDTH - 2) generate 

        X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD); 

    end generate G2; 

end generate G; 
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END IF 
if A > B then 

    Compare <= GT; 
elsif A < B then 

    Compare <= LT; 
else 

    Compare <= EQ; 
end if; 

END LOOP 
loop1: for state in stateval loop 

    if current_state = state  then 

         valid_state <= true; 
    end if; 

end loop loop1; 

... 
process 

begin 

    while error_flag /= '1'  and done /= '1' loop 

        Clock <= not Clock; 

        wait for CLK_PERIOD/2; 

    end loop; 

end process; 

END PROCESS 
reg: process(Rst,Clk) 

        variable Qreg: std_ulogic_vector(0 to 7); 

begin 

        if Rst = '1' then  -- Async reset 

            Qreg := "00000000"; 
        elsif rising_edge(Clk) then 

            if Load = '1' then 
                Qreg := Data; 
            else 
                Qreg := Qreg(1 to 7) & Qreg(0); 
            end if; 
        end if; 
        Q <= Qreg; 
end process; 
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END RECORD 
type test_record is record 

      CE: std_ulogic;  -- Clock enable 

      Set: std_ulogic; 

      Din: std_ulogic; 
      CRC_Sum: std_ulogic_vector (15 downto 0); 

end record; 

END UNITS 
type time isrange -2_147_483_647 to 2_147_483_647 

    units 

        fs; 

        ps  = 1000 fs; 

        ns  = 1000 ps; 

        us  = 1000 ns; 

        ms  = 1000 us; 

        sec = 1000 ms; 

        min = 60 sec; 

        hr  = 60 min; 
    end units; 

Keyword: ENTITY 
An entity declaration used to describe the interface of a design entity. 

A design entity is an abstract model of a digital system.  A design entity includes: 

• an entity declaration (which specifies the name of the entity and its interface ports), and 

• at least one architecture body (which models the internal workings of the digital system). 
An entity declaration includes – in this order – the reserved word “entity”, the entity's name, the 
reserved word “is”, the following optional statements: 

• the reserved word “generic” followed by a list of generics and their types, 

• the reserved word “port” followed by a list of interface port names and their types, 

• any declaration of entity items, 
• the reserved word “begin” followed by appropriate entity declaration statements, and  

• non-optionally, the reserved word “end” followed (optionally) by the entity's name. 

The ports of an entity are visible within the architecture(s) of the entity, and may be referenced (have 
their values read, or have values assigned to them, depending on their mode) as signals within the 
architecture(s). 
Declarations made within an entity statement are visible within the corresponding architecture(s). 
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Example 
entity Mux is 

generic(RISE, FALL: time := 0 ns); 

port(A,B: in std_ulogic; 

        Sel: in  std_ulogic; 

        Y: out std_ulogic); 

end Mux; 

Keyword: EXIT 
The exit keyword is a sequential statement used in a loop to cause execution to jump out of the loop. 

An exit statement can only be used in a loop and can include an optional when condition.  An exit 
statement includes – in this order – the reserved word “exit”, an optional loop identifier (if no identifier 
is given, the exit statement is applied to the loop in which the exit statement occurs), and, optionally, 
the reserved word “when” followed by the condition under which the exit action is to be executed. 

Example 
for idx in vectors'range loop 

  apply_vector(vec(idx)); 
  wait for PERIOD; 

  if done = '1' then 

    exit; 

  end if; 

end loop; 

Keyword: FILE 
The file keyword declares a file. 

A file declaration includes – in this order – the reserved word “file”, the name of the file (as used by the 
program), the subtype indicator (which must define a file subtype), the reserved word “is”, on optional 
mode indicator (which must be either “in” or “out”), and the file's external name (which must be a string 
expression and is surrounded by quote marks).  If no mode is specified, the default is “in”. 

Example 
file vector_file: text is in "VECTOR.DAT"; 



VHDL Language Reference 

TR0114 (v1.1) May 20, 2005 159 

Keyword: FOR 
The for keyword is a statement used to identify: 

• a block specification in a block configuration, 

• a component specification in a component configuration, 

• a parameter specification in a generate statement, 

• a parameter specification in a loop statement, or 

• a time expression in a wait statement. 

Example 
configuration build1 of testfib is 

    for stimulus 

        for DUT: fib use entity work.fib(behavior) 

            port map(Clk=>Clk,Clr=>Clr,Load=>Load, 

                      Data_in=>Data_in,S=>S); 
        end for; 

    end for; 

end configuration build1; 

Keyword: FUNCTION 
A function statement defines a group of sequential statements that return a single value. 

A function specification includes – in this order – the reserved word “function”, the function's name, a 
parameter list (which can only include constants and signal objects, and must all be of mode in), the 
reserved word “return”, and the type of the value to be returned by the function. 

Example 
function to_unsigned (a: std_ulogic_vector)  

           return integer is 

        alias av: std_ulogic_vector (1 to a'length) is a; 

        variable ret,d: integer; 

begin 
        d := 1; 
        ret := 0; 
        for i in a'length downto 1 loop 
            if (av(i) = '1') then 
                ret := ret + d; 
            end if; 
            d := d * 2; 
        end loop; 
        return ret; 
end to_unsigned; 



VHDL Language Reference 

160 TR0114 (v1.1) May 20, 2005 

Keyword: GENERATE 
The generate keyword is used to do one of the following: 

• replicate a set of concurrent statements (a for-generation), or 

• selectively execute a set of concurrent statements if a specified condition is met (an if-generation). 

A generate statement used to replicate a set of concurrent statements includes – in this order – the 
following: 
• a label for the generate, followed by the reserved word “for”, followed by a parameter specification 

for the “for”, 
• the reserved word “generate”, 

• the concurrent statements to be replicated, 
• the reserved words “end generate”. 

A generate statement used to selectively execute a set of concurrent statements includes – in this 
order – the following: 
• a label for the generate, followed by the reserved word “if”, followed by the condition for the “if”, 
• the reserved word “generate”, 

• the concurrent statements to be selectively executed if the test condition is true, 
• the reserved words “end generate”. 

Example 
G: for I in 0 to (WIDTH - 2) generate 

    -- This generate statement creates the first  

    -- XOR gate in the series... 
    G0: if I = 0 generate 

        X0: xor2 port map(A => D(0), B => D(1), Y => p(0)); 

    end generate G0; 

    -- This generate statement creates the middle  

    -- XOR gates in the series... 
    G1: if I > 0 and I < (WIDTH - 2) generate 

        X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i)); 

    end generate G1; 

    -- This generate statement creates the last  

    -- XOR gate in the series... 
    G2: if I = (WIDTH - 2) generate 

        X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD); 

    end generate G2; 

end generate G; 
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Keyword: GENERIC 
The generic keyword used in a component or configuration to define constants whose values may be 
controlled by the environment. 
A generic statement includes – in this order – the reserved word “generic”, followed by a list of 
declarations for the generics being defined. 

Example 
generic(RISE, FALL: time := 0 ns); 

Keyword: GROUP 
The group keyword is used to define a group template or specific group. Groups may be used to give 
a name to a collection of named entities.  

Group Template Declaration 
A group template declaration includes – in this order – the reserved word “group” followed by a group 
name, the reserved word “is”, and a list of classes enclosed in parentheses. 

Example 
group signal_pair is (signal1, signal2);  -- group of two signals 

Group Declaration 

A group declaration includes – in this order – the reserved word “group” followed by a group name, the 
character “:”, a group template name, and a list of named entities enclosed in parentheses. 

Example 
group G1: signal_pair(Clk1,Clk2); 

Keyword: GUARDED 
The guarded keyword is used to limit the execution of a signal statement within a block when the block 
includes a guard statement. 

Example 
use ieee.std_logic_1164.all; 
entity latch is 
    port( D, LE: in std_logic; 
             Q, QBar: out std_logic); 
end latch; 
architecture mylatch of latch is 
begin 
    L1: block (LE = '1') 
    begin 
        Q <= guarded D after 5 ns; 
        QBar <= guarded not(D) after 7 ns; 
    end block L1; 
end mylatch; 



VHDL Language Reference 

162 TR0114 (v1.1) May 20, 2005 

Keyword: IF 
The if keyword is a sequential statement used for describing conditional logic. 

Example 
if A > B then 

    Compare <= GT; 
elsif A < B then 

    Compare <= LT; 
else 

    Compare <= EQ; 
end if; 

Notes 
The condition expression of an if statement must be a Boolean logic expression (meaning that it must 
evaluate to a True or False value). 
If statements are sequential and may only be used in processes, procedures or functions. 

Keyword: IMPURE 
The impure keyword is used to declare a function that may return a different value given the same 
actual parameters, due to side effects. 

Impure functions have access to a broader class of values than pure functions, and can modify objects 
that are outside their own scope. 

Example 
impure function HoldCheck (Clk, Data) return Boolean; 

Keyword: IN 
The in keyword can be used in two different ways depending on the context: 

• One of five possible modes for an interface port (the other four are inout, out, buffer, and linkage); 
the in mode indicates a port which can be used only for input; and 

• An optional word in a constant declaration. 

Example 
component COUNT4EN 

    port ( CLK,RESET,EN : in  std_logic; 

           COUNT : out std_logic_vector(3 downto 0) 

    ); 
end component; 
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Keyword: INERTIAL 
The inertial keyword is used to specify that a delay is inertial. In the absence of an inertial or 
transport keyword, the delay is assumed to be inertial. 

Example 
Qout <= A and B inertial after 12 ns; 

Keyword: INOUT 
The inout keyword specifies one of five possible modes for an interface port.  (The other four are in, 
out, buffer, and linkage.)  The inout mode indicates a port which can be used for both input and 
output. 

Example 
procedure jkff (signal Rst, Clk: in std_logic; 

                        signal J, K: in std_logic; 

                        signal Q,Qbar: inout std_logic) is 

begin 

    if Rst = '1' then 

        Q <= '0'; 
    elsif Clk = '1' and Clk'event then 

        if J = '1' and K = '1' then 

            Q <= Qbar; 
        elsif J = '1' and K = '0' then 

            Q <= '1'; 
        elsif J = '0' and K = '1' then 

            Q <= '0'; 
        end if; 

    end if; 

    Qbar <= not Q; 

end jkff; 

Keyword: IS 
The is keyword is used as part of the syntax when declaring, for example, an architecture, case 
statement, configuration, entity, function, package, package body, procedure, subtype or type. 

Example 
architecture arch2 of my_design is 
    signal Bus1, Bus2: std_logic_vector(7 downto 0); 
begin 
    . . . 
end declare; 
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Keyword: LABEL 
The label keyword is used to specify a label name in an attribute statement. 

Example 
attribute CHIP_PIN_LC of u0 : label is "LAB2"; 

attribute CHIP_PIN_LC of u2 : label is "LAB7"; 

Keyword: LIBRARY 
The library keyword identifies a library. The library statement is a context clause used to identify 
libraries from which design units can be referenced. 
A library statement includes – in this order – the reserved word “library” followed by a list of library 
logical names. 

Example 
library std_logic_1164;   -- Use the IEEE 1164 standard library 

Notes 
Using a library clause makes a named library visible to the working environment.  However, to use a 
design unit from within that library, a “use” statement must also be included specifying the design unit 
to be used. 

 

All design units automatically include the following implicit library clause: 

library STD, WORK;  

Keyword: LINKAGE 
The linkage keyword specifies one of five possible modes for an interface port. (The other four are in, 
out, inout, and buffer.) 
The linkage mode indicates a port which can be used for both input and output, and it can only 
correspond to a signal. 

Keyword: LITERAL 
The literal keyword is used in group template declarations. 

Keyword: LOOP 
The loop keyword executes a series of sequential statements multiple times. 

A loop statement can include either: 
• a “while” iteration scheme, 

• a “for” iteration scheme, or 

• no iteration scheme. 
A loop statement using a “while” iteration scheme includes – in this order – the following: 
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• an optional loop label, 
• the reserved word “while”, followed by the condition which controls whether the series of sequential 

statements within the loop is executed, followed by the reserved word “loop”, 

• the series of sequential statements to be executed if the test condition evaluates to be True, 
• the reserved words “end loop”, followed by an optional loop label (which, if used, must be the same 

as the loop label declared above. 

Example 
while (I < DBUS'length) loop 

... 

I := I + 1; 
end loop; 

A loop statement using a “for” iteration scheme includes – in this order – the following: 

• an optional loop label, 
• the reserved word “for”, followed by a parameter specification for the “for”, followed by the reserved 

word “loop”, 

• the series of sequential statements to be executed for the instances defined in the parameter 
specification, 

• the reserved words “end loop”, followed by an optional loop label, which, if used, must be the same 
as the loop label declared above. 

Example 
for I in 0 to DBUS'length - 1 loop 

... 
end loop; 

A loop statement with no iteration scheme includes – in this order – the following: 

• an optional loop label, 
• the reserved word “loop”, 

• the series of sequential statements to be executed, 
• the reserved words “end loop”, followed by an optional loop label, which, if used, must be the same 

as the loop label declared above. 

A loop statement with no iteration scheme continues to execute until some action causes execution to 
cease.  This could be done using an “exit” statement, a “next” statement, or a “return” statement 
within the loop. 

Example 
loop 

exit when I = DBUS'length; 

I := I + 1; 
end loop; 
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Keyword: MAP 
The map keyword is used in conjunction with the port and generic keywords to declare a port map or 
generic map respectively. 

Port Map 
A port map statement is used to associate signals of ports within a block to ports defined outside the 
block. 

For example, suppose a given entity includes an architecture, and the architecture includes a block.  A 
port map statement could be used to set the value of an entity port (which was defined by a “port” 
statement in the entity declaration), equal to the value of a block port (which was defined by a “port” 
statement in the block). 
A port map statement includes – in this order – the reserved words port and map followed by an 
association list (e.g., “LOCAL_PORT => GLOBAL_PORT”). The association list may use positional or 
named association, as shown in the following examples. Ports may be left unconnected through the 
use of the open keyword. 

Example 
U1: And2 port map (IN1, IN2, OUT1); 

U1: And2 port map (A => IN1, B => IN2, Y => OUT1); 

A18: AddBlk port map (A => A1, B => A1, S => Sum, Cout =>open); 

Generic Map 
A generic map statement is used to associate values of constants within a block to constants defined 
outside the block. 

For example, suppose a given entity includes an architecture, and the architecture includes a block. A 
generic map statement could be used to set the value of an entity constant (which was defined by a 
“generic” statement in the entity declaration), equal to the value of a block constant (which was defined 
by a “generic” statement in the block). 

A generic map statement includes – in this order – the reserved words generic and map followed by 
an association list (e.g., “LOCAL => GLOBAL”). 

Example 
U1: And2 
    generic map (RISE_TIME => 2 ns, FALL_TIME => 2 ns); 

    port map (A => IN1, B => IN2, Y => OUT1); 
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Keyword: MOD 
The mod keyword is a modulus operator that can be applied to integer types.  The result of the 
expression “A mod B” is an integer type and is defined to be the value such that: 

• the sign of (A mod B) is the same as the sign of B, and  

• abs (A mod B) < abs (B), and 

• (A mod B) = (A * (B - N)) for some integer N. 

Example 
begin 
  for i in 0 to (bits-1) loop 
    if ((tmp mod 2) = 1) then 
      out_vec(i) := '1'; 
    end if; 
    tmp := tmp/2; 
  end loop; 
  return out_vec; 
end int_2_v; 

Keyword: NAND 
Nand is a logical “not and” operator which can be used in an expression.  It produces the opposite of 
the logical negation of the “and” operator. 
The expression “A nand B” returns True when 

• A is false, or 

• B is false, or 

• both A and B are false. 

Example 
begin 
    Y <= (A nand B) and Sel; 
    Y <= (A nor B) and not Sel; 
end; 

Keyword: NEW 
The new keyword is used to create an object of a specified type and return an access value that refers 
to the created object. 

A new statement includes – in this order – the allocator (which, when evaluated, refers to the created 
object), followed by the reserved symbol “:=“, followed by the reserved word “new”, followed by the 
type of the object being created, and optionally followed by the reserved “new” and an expression for 
the initial value of the object being created. 

Example 
count:= new natural; 
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Keyword: NEXT 
Next is a statement allowed within a loop that causes the current iteration of the loop to be terminated 
and cycles the loop to the beginning of its next iteration. 
A next statement includes – in this order – the reserved word “next”, an optional loop label (which must 
be the same as the label of the loop in which the next statement occurs), and, optionally, the reserved 
word “when” followed by a condition which, when True, causes the next statement to be executed. 

If a “when” clause is not included, a “next” statement is executed as soon as it is encountered. 

Example 
L1 : for i in 0 to 9 loop 

  L2 : for j in opcodes loop 

         for k in 4 downto 2 loop -- loop label is optional 

           if k = i next L2;      -- go to next L2 loop 

         end loop; 

       exit L1 when j = crash; -- exit loop L1 

  end loop; 

end loop; 

Keyword: NOR 
Nor is a logical “not or” operator which can be used in an expression.  It produces the logical negative 
of the “or” operator.  The expression “A nor B” returns True only when both A and B are false. 

Example 
begin 

    Y <= (A nand B) and Sel; 

    Y <= (A nor B) and not Sel; 

end; 

Keyword: NOT 
Not is a logical “not” operator which can be used in an expression.  The expression “not A” returns 
True if A is false and returns False if A is true. 

Example 
begin 

    Y <= not (A and B) and Sel; 

    Y <= not (A or B) and not Sel; 

end arch4; 
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Keyword: NULL 
Null is a statement that performs no action. 

The null statement can be used in situations where it is necessary to explicitly specify that no action is 
needed.  For example, a null statement may be useful in a case statement where all alternatives must 
be specified but where no action may be required for some alternatives. 

Example 
D1 <= '0'; -- Default values... 
Strobe <= '0'; 
Rdy <= '0'; 
case current_state is 
    when S0 => 
      D1 <= '1'; 
    when S1 => 
      Strobe <= '1'; 
    when S2 => 
      Rdy <= '1'; 
    when others => 
      null; 
end case; 

Keyword: OF 
The of keyword is used as part of the syntax when declaring, for example, an architecture, array, 
attribute or configuration. 

Example 
architecture arch1 of my_design is 
    signal Q: std_logic; 
begin 
    . . . 
end arch1; 

Keyword: ON 
The on keyword is used as part of a wait statement to temporarily suspend a process until an event 
occurs which affects one or more specified signals. The process will resume when any or all of the 
listed signals change. 

Example 
Example: process is 
begin 
   sum <= a xor b after time_period; 
   carry <= a and b after time_period; 
   wait on a, b; 
end process Example; 
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Keyword: OPEN 
The open keyword is used in an association list (within a component instantiation statement) to 
indicate a port that is not connected to any signal. 

Example 
U2: count8 port map (C => Clk1, Rst => Clr, L => Load, D => Data,  

                     Q => , Cin => open); 

Keyword: OR 
Or is a logical “or” operator that can be used in an expression.  The expression “A or B” returns True 
if 
• A is true, or 

• B is true, or 

• both A and B are true. 

Example 
begin 

    Y <= not (A and B) and Sel; 

    Y <= not (A or B) and not Sel; 

end; 

Keyword: OTHERS 
The others keyword is used to specify all remaining elements in: 

• an element association (in an aggregate),  

• an attribute specification,  

• a configuration specification, 

• a disconnection specification, 

• case statement, or 

• a selected assignment 

Example 
when others => null; 

... 
constant ZERO: std_ulogic_vector (A'left to A'right) := (others=>0); 
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Keyword: OUT 
The out keyword specifies one of five possible modes for an interface port. (The other four are in, 
inout, buffer, and linkage.) 

The out mode indicates a port which can be used only for output. 

Example 
component COUNT4EN 

    port ( CLK,RESET,EN : in  std_logic; 

           COUNT : out std_logic_vector(3 downto 0) 

    ); 
end component; 

Keyword: PACKAGE 
The package keyword specifies a set of declarations which can include the following items: aliases, 
attributes, components, constants, files, functions, types, and subtypes. A package declaration can 
also include attribute specifications, disconnection specifications, and use clauses. 

By grouping common declarations in a package declaration, the package declaration can be imported 
and used in other design units. 

Example 
package conversions is 

    function to_unsigned (a: std_ulogic_vector) return  

        integer; 
    function to_vector (size: integer; num: integer) return  

        std_ulogic_vector; 
end conversions; 

Keyword: PORT 
The port keyword is used in a configuration to define the input and output ports of an entity.  A port 
statement includes – in this order – the reserved word “port”, followed by a list of declarations for the 
port signals being defined. 

Example 
entity Mux is 

   port(A,B: in std_ulogic; 

        Sel: in  std_ulogic; 

        Y: out std_ulogic); 

end Mux; 
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Keyword: POSTPONED 
The postponed keyword is used to declare a process as a postponed process. 

Postponed processes do not execute until the final simulation cycle at the currently modeled time. 

Example 
P1: postponed process (D,Snd,Int) 

begin 

      -- Statements are postponed to end of simulation cycle 
end postponed process; 

Keyword: PROCEDURE 
A procedure is a group of sequential statements that are to be executed when the procedure is called. 

A procedure does not have a return value, but instead can return any number of values (or no values) 
via its parameter list. Parameters of a procedure must have a mode associated with them (e.g. in, out, 
inout). Values are returned by using mode out or mode inout. 
A procedure specification includes – in this order – the reserved word “procedure”, the procedure 
name, and a list of the procedure's parameters (which may be constants, signals, or variables, each of 
whose modes may be in, out, or inout). 

Example 
procedure dff (signal Clk,Rst,D; in std_ulogic;  

               signal Q: out std_ulogic) is 

  begin 

      if Rst <= '1' then 

        Q <= '0'; 
      elsif rising_edge(Clk) then 

        Q <= D; 
      end if; 

end procedure; 

Keyword: PROCESS 
The process keyword defines a sequential process intended to model all or part of a design entity. 

A process statement includes – in this order – an optional sensitivity list, a declarations section, a 
“begin” statement, the sequential statements describing the operation of the process, and an “end” 
statement. 

The sensitivity list identifies signals to which the process is sensitive.  Whenever an event occurs on an 
item in the sensitivity list, the sequential instructions in the process are executed.  If no sensitivity list is 
provided, the process executes until suspended by a wait statement. 

In addition to signal and variable assignments, the sequential statements in the body of the process 
can include the following: assertion, case, exit, if, loop, next, null, procedure, return, and wait. 
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Example 
reg: process(Rst,Clk) 

        variable Qreg: std_ulogic_vector(0 to 7); 

begin 

        if Rst = '1' then   -- Async reset 

            Qreg := "00000000"; 
        elsif rising_edge(Clk) then 

            if Load = '1' then 

                Qreg := Data; 
            else 

                Qreg := Qreg(1 to 7) & Qreg(0); 

            end if; 

        end if; 

        Q <= Qreg; 
end process; 

Keyword: PURE 
The pure keyword is used to declare a pure function. Pure functions always return the same value for 
a given set of input actual parameters, and have no side effects. 
Pure is assumed if there is no pure or impure keyword. 

Example 
pure function HoldCheck (Clk, Data) return Boolean; 

Keyword: RANGE 
The range keyword is used to define a range constraint for a scalar type. 

A range statement includes – in this order – the reserved word “range”, the name of the range, and, 
optionally, two simple expressions for the outer bounds of the range separated by either the reserved 
word “to” (the ascending direction indicator) or the reserved word “downto” (the descending direction 
indicator). 

Example 
variable Q: integer range 0 to 15; 
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Keyword: RECORD 
The record keyword is used to declare a record type and its corresponding element types. 

A record statement includes – in this order – the following: 
• the reserved word “record”, 

• an element declaration which includes – in this order – one or more identifiers which share a 
common subtype, followed by identification of that subtype, 

• optionally, additional element declarations of the form specified above, and 
• the reserved words “end record”. 
An element declaration that includes more than one identifier (for example, “COUNT, SUM, TOTAL: 
INTEGER”) is equivalent to a series of single element declarations. 

Example 
type test_record is record 

      CE: std_ulogic;  -- Clock enable 

      Set: std_ulogic; 

      Din: std_ulogic; 
      CRC_Sum: std_ulogic_vector (15 downto 0); 

end record; 

type test_array is array(positive range <>) of test_record; 

Keyword: REGISTER 
Register is one of two kinds of signals used in a signal declaration (the other is bus). 

A register signal represents a hardware storage register and defaults to its last driven value when all of 
the signal's drivers are turned off. 

Example 
signal storage_state : resolve_state state_type register := state_one; 

Keyword: REJECT 
The reject keyword is used to specify the minimum pulse width to propagate as a result of an after 
clause. 

If no reject time is specified, the specified delay time is assumed for the reject time. 

Example 
Q <= Data reject 2 ns after 7 ns;   -- Delay is 7 ns, reject time is 2 ns 



VHDL Language Reference 

TR0114 (v1.1) May 20, 2005 175 

Keyword: REM 
The rem operator is a remainder operator that can be applied to integer types.  The result of the 
expression “A rem B” is an integer type and is defined to be the value such that: 

• the sign of (A rem B) is the same as the sign of A, and  

• abs (A rem B) < abs (B), and 

• (A rem B) = (A - (A / B) * B). 

Example 
begin 

  for i in 0 to (bits-1) loop 

    if ((tmp rem 2) = 1) then 

      out_vec(i) := '1'; 
    end if; 

    tmp := tmp/2; 
  end loop; 

  return out_vec; 

end int_2_v; 

Keyword: REPORT 
The report keyword is an option that can be defined as part of an assert statement. It allows a user-
defined message to be displayed if the given condition of the statement is false. 

Example 
assert (S = S_expected) 
report "S does not match the expected value!" 
severity Error; 

The report keyword can also be used within a loop for debugging purposes. A message will be 
reported to the screen at each iteration of the loop. 

Example 
architecture example of loop_stmt is 
begin 
  process (a) 
    variable b: integer; 
  begin 
    b := 1; 
    while b < 7 loop 
       report "Loop number = " & integer'image(b); 
       b := b + 1; 
    end loop; 
  end process; 
end example; 
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Keyword: RETURN 
Return is a sequential statement used at the end of a subprogram (a function or procedure) to 
terminate the subprogram and return control to the calling object. 
When used in a procedure, the reserved word “return” appears alone. 

When used in a function, the reserved word “return” must be followed by an expression which defines 
the result to be returned by the function.  The expression's type must be the same type as specified by 
the return statement in the function's specification. 

A return statement must be the last statement executed in a function. 

Example 
function rising_edge (signal s: std_logic) return boolean is 

begin 

     return (s'event and (To_X01(s) = '1') and 

         (To_X01(s'last_value) = '0')); 
end rising_edge; 

Keyword: ROL 
Rol is the rotate left operator. Each bit in the left operand is shifted left by the number of bits specified 
in the right operand. Bits in the left-most positions of the operand are shifted to the right-most bits of 
the operand. 

Example 
Sreg <= Sreg rol 2; 

Keyword: ROR 
Ror is the rotate right operator. Each bit in the left operand is shifted right by the number of bits 
specified in the right operand. Bits in the right-most positions of the operand are rotated to the left-most 
bits of the operand. 

Example 
Sreg <= Sreg ror 2; 

Keyword: SELECT 
Select is a concurrent signal assignment statement that selects and assigns a value to a target signal 
from among a list of alternatives, based on the value of a given expression. 

A select statement includes – in this order – the following: 
• the reserved word “with”, followed by the expression to be evaluated, followed by the reserved 

word “select”, 
• the target signal, followed by the reserved symbol “<=“, followed by: 
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(a) the first value which could be assigned to the target signal, followed by the reserved word 
“when”, followed by a choice which, if the expression evaluates to be that choice, will cause the first 
value to be assigned to the target signal, and 

(b) second and subsequent values which could be assigned to the target signal, each followed by 
the reserved word “when”, and each followed by a choice which, if the expression evaluates to be 
that choice, will cause the value to be assigned to the target signal. 

Since the select statement chooses one and only one alternative for execution at a given time, all 
possible values for the expression must be covered in “when” statements.  An “others” clause may be 
used to cover values not explicitly named. 

Example 
architecture concurrent of mux is 

begin 

    with Sel select 

        Y <= A when "00", 

        B when "01", 

        C when "10", 

        'X' when others; 

end concurrent; 

Keyword: SEVERITY 
The severity keyword is an option that can be defined as part of an assert statement. It allows the user 
to choose a severity level if the given condition of the statement is false. 

The four possible severity levels are:  Note, Warning, Error, and Failure. The value of severity is 
typically used to control the actions of a simulation in the event the given condition is false.  For 
example, a severity level of Failure may be used to stop the simulation. 

Example 
if (S /= S_expected) then 

   err_cnt := err_cnt + 1; 
   assert false 

      report "Vector failure!" & lf & 

      "Expected S to be  " & stdvec_to_str(S_expected) & lf & 

      "but its value was " & stdvec_to_str(S) & lf 
      severity note; 

end if; 
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Keyword: SHARED 
The shared keyword is used as part of a variable declaration to allow the variable to be accessed by 
multiple processes. 

Example 
architecture example of test1 is 

shared variable base_time : natural := 0; 

... 
begin 

... 
end architecture example; 

Notes 
Shared variables can only be declared in specific areas of VHDL code, namely: 

• as part of an entity declaration 

• in the body of an architecture 

• in a block statement 

• in a generate statement 

• in a package declaration. 

Keyword: SIGNAL 
Signal declares a signal of a specified type. 

A signal declaration includes – in this order – the reserved word “signal”, the name of the signal, the 
subtype of the signal, an optional indication of the signal's kind (which must be either “register” or 
“bus”), and optionally, an expression specifying the initial value of the signal. 

Example 
architecture behavior of fsm is 

    signal current_state: state; 

    signal DataBuf: std_logic_vector(15 downto 0); 

begin 

    ... 
end behavior; 

Notes 
Signals declared within an entity are visible in the corresponding architecture(s). 

 

A signal cannot be declared within a process, procedure or function. 
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Keyword: SLA 
The sla keyword is the shift left arithmetic operator. 

Example 
Addr <= Addr sla 8; 

Keyword: SLL 
The sll keyword is the shift left logical operator. 

Example 
Addr <= Addr sll 8; 

Keyword: SRA 
The sra keyword is the shift right arithmetic operator. 

Example 
Addr <= Addr sra 8; 

Keyword: SRL 
The srl keyword is the shift right logical operator. 

Example 
Addr <= Addr srl 8; 

Keyword: SUBTYPE 
The subtype keyword declares a subtype (a type with a constraint that is based on an existing parent 
type). 
A subtype declaration includes – in this order – the reserved word “subtype”, the subtype's identifier, 
the reserved word “is”, an optional resolution function, the base type of the subtype, and an optional 
constraint.  If no constraint is included, the subtype is the same as the specified base type. 

Example 
subtype short is integer range 0 to 255; 

... 
subtype X01Z is std_ulogic range 'X' to 'Z'; 
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Keyword: THEN 
The then keyword is part of the syntax of an if statement. 

Example 
if A > B then 

    Compare <= GT; 
elsif A < B then 

    Compare <= LT; 
else 

    Compare <= EQ; 
end if; 

Keyword: TO 
The to keyword is used to indicate an ascending range in a range statement or other statement which 
includes a range (for example, a variable statement).  (The reserved word “downto” is used to indicate 
a descending range.) 

Example 
signal A0,A1: std_ulogic_vector(0 to 15); 

Keyword: TRANSPORT 
The transport keyword is used to specify non-inertial delay in a signal assignment statement. 

Example 
Waveform <= transport '1' after 10 ns; 

Keyword: TYPE 
The type keyword declares a type. 

There are two kinds of type declarations: a full type declaration and an incomplete type declaration. 
A full type declaration includes – in this order – the reserved word “type”, the type identifier, the 
reserved word “is”, and the type definition.  A type definition can be an access type, a composite type, 
a file type, or a scalar type. 
An incomplete type declaration includes only the reserved word “type” followed by the type's identifier. 
 If an incomplete type declaration exists, a full type declaration with the same identifier must also exist. 
 The full type declaration must occur after the incomplete type declaration and within the same 
declarations section as the incomplete type declaration. 

Example 
type StateMachine is (RESET, IDLE, READ, WRITE,  

        ERROR); 

... 
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type RAD16 is range 0 to 15; 
... 
type test_record is record 
    CE: std_ulogic;  -- Clock enable 
    Set: std_ulogic; 
    Din: std_ulogic; 
    CRC_Sum: std_ulogic_vector (15 downto 0); 
end record; 

Notes 
The two type declarations define two different types, even if the definitions are the same and they differ 
only by their respective identifiers. 

Keyword: UNAFFECTED 
The unaffected keyword is used to indicate in a conditional or selected signal assignment when the 
signal is not to be given a new value. 

Example 
Mux <= A when Sel = "00" else 
       B when Sel = "01" else 
       C when Sel = "10" else 
       unaffected; 

Keyword: UNITS 
The units keyword is used in a type declaration to declare physical types. 

A units statement includes – in this order – the following: 
• the reserved word “units”, 

• the base unit, 

• optionally, one or more secondary units, and 
• the reserved words “end units”. 

Example 
type time is range -2_147_483_647 to 2_147_483_647 
    units 
        fs; 
        ps  = 1000 fs; 
        ns  = 1000 ps; 
        us  = 1000 ns; 
        ms  = 1000 us; 
        sec = 1000 ms; 
        min = 60 sec; 
        hr  = 60 min; 
    end units; 
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Keyword: UNTIL 
The until keyword is used as part of a wait statement to temporarily suspend a process until a 
specified condition is met. 

Example 
process 

begin 

    wait until Clk = '1' and Clk'event; 

    M_out <= data_in; 
    wait until Clk = '1' and Clk'event; 

    M_out <= not data_in; 

end process; 

Keyword: USE 
The use statement identifies items in other design units so those items can be referenced. 

A use clause includes – in this order – the reserved word “use”, followed by a list of design units (or 
design unit items) to be referenced. 

A use clause makes the referenced design units visible to the working environment.  If a design unit (or 
design unit item) belongs to a library different from the current library, a library statement must be 
included before the use statement. The library statement must specify the library holding the 
referenced design unit. 

Example 
use mylib.mypackage.dff; 

... 
use mylib.mypackage.all; 

... 
use mylib.all; 

... 
use work.all; 

All design units automatically include the following two implicit clauses: 

library STD, WORK;  

use STD.STANDARD.all; 
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Keyword: VARIABLE 
The variable keyword declares a variable of a specified type. 

A variable declaration includes – in this order – the reserved word “variable”, the variable's name, the 
variable's subtype, and, optionally, an expression specifying the initial value of the variable. 

Example 
process(Rst,Clk) 

        variable Q: integer range 0 to 15; 

begin 

    if Rst = '1' then   -- Asynchronous reset 

        Q := 0; 
    elsif rising_edge(Clk) then 

        if Load = '1' then 

            Q := to_unsigned(Data);  -- Convert vector to  

-- integer 
        elsif Q = 15 then 

            Q := 0; 
        else 

            Q := Q + 1; 
        end if; 

    end if; 

    Count <= to_vector(4,Q); -- Convert integer to  

-- vector 
end process; 

Notes 
A variable can only be declared within a process, procedure or function.  Also, a variable cannot be of 
a file type. 

 

Variables declared within a process have their values preserved during subsequent executions of the 
process. 

 

Variables declared within a function or procedure have their values initialized each time the function or 
procedure is called. 
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Keyword: WAIT 
The wait statement is used to temporarily suspend a process until: 

• a specified time has passed (“wait for”, followed by a time expression), or  

• a specified condition is met (“wait until”, followed by a Boolean expression), or  

• an event occurs which affects one or more signals (“wait on”, followed by a sensitivity list which 
specifies signals on each of which an event must occur before processing continues). 

Example 
CLOCK: process 

    variable c: std_ulogic := '0'; 

    constant PERIOD: time := 50 ns; 

begin 

    wait for PERIOD / 2; 

    c := not c; 

    clk <= c; 
end process; 

Notes 
When a wait statement is used within a process, the process must not include a sensitivity list. 

Keyword: WHEN 
The when keyword is used to specify a condition during which an exit or next statement will be 
executed. 

Example 
L1 : for i in 0 to 9 loop 

  L2 : for j in opcodes loop 

         for k in 4 downto 2 loop-- loop label is optional 

           if k = i next L2;      -- go to next L2 loop 

         end loop; 

       exit L1 when j = crash; -- exit loop L1 

  end loop; 

end loop; 

It is also used to specify a choice (or choices) within a case statement. 

Example 
case current_state is 

     when IDLE => 

       if start_key = '1' then 
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       current_state <= READ0; 
       end if; 

     when READ0 => 

       current_state <= READ1; 
     when READ1 => 

       current_state <= READX; 
     when READX => 

       current_state <= WRITE0; 
     when WRITE0 => 

       current_state <= WRITEX; 
     when WRITEX => 

       current_state <= IDLE; 
end case; 

Keyword: WHILE 
The while keyword is used to specify a condition during which a loop will be executed. 

Example 
process 

begin 

    while error_flag /= '1'  and done /= '1' loop 

        Clock <= not Clock; 

        wait for CLK_PERIOD/2; 

    end loop; 

end process; 

Keyword: WITH 
The with keyword is used in the syntax of a selected signal assignment. 

Example 
architecture concurrent of mux is 

begin 

    with Sel select 

        Y <= A when "00", 

        B when "01", 

        C when "10", 

        'X' when others; 

end concurrent; 
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Keyword: XNOR 
Xnor is the logical “both or neither” (equality) operator which can be used in an expression. 
The expression “A xnor B” returns True only when 

• A is true and B is true, or 

• A is false and B is false. 

Example 
architecture example of test is 

begin 

    Y <= a xnor b; 

end example; 

Keyword: XOR 
Xor is the logical “one or the other but not both” (inequality) operator which can be used in an 
expression.  The expression “A xor B” returns True only when 

• A is true and B is false, or 

• A is false and B is true. 

Example 
entity fulladder is 

    port (X: in bit; 

          Y: in bit; 

          Cin: in bit; 

          Cout: out bit; 

          Sum: out bit); 

end fulladder; 

architecture concurrent of fulladder is 

begin 

    Sum <= X xor Y xor Cin; 

    Cout <= (X and Y) or (X and Cin) or (Y and Cin); 

end concurrent; 
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