SYSTEM BUS ARCHITECTURE

A bus is a communication pathway connecting two or more devices. It is a shared transmission medium – a signal transmitted by one device is available for reception by all devices connected to the bus.

Only one device at a time can successfully transmit. Computer systems contain a number of different buses that provide pathways btw components at various levels of the computer system hierarchy.

A bus that connects major computer components (Processor, memory I/O) is called a system bus.

1. A computer consists of a set of components or modules of 3 basic types:

shema..

[image: image64.emf]
2. [image: image1.png]Internal data

External data

Intorna

External data

Interrupt signals,

INSTRUCTIONS

Interrupt signals

ADDRESS

Control signals

The interconnection structure must support the following types of transfer:

· Memory to processor: an instruction fetch or an operand read

· Processor to memory: CPU writes

· I/O to processor: input

· Processor to I/O: output
· I/O to or from memory : DMA
shema..

CONTROL LINES:

3. Memory write

4. Memory read

5. I/O write

6. I/O read

7.
Bus request

8. Bus grant

9. Transfer Acknowledge

10. Interrupt request

11. Interrupt acknowledge

12. Clock

13. Reset

Major Disadvantage: Bus cycle is determined by the slowest device!!!

MULTIPLE BUS HIERARCHIES:

· The bus length increases – we have greater propagation delay

· The bus may become a bottleneck – in cases the aggregate data transfer demand approaches the capacity of the bus.

TRADITIONAL BUS ARCHITECTURE

· Local Bus – connect the CPU to a cache memory and cache controller, connected to a system bus that supports main memory.

· System bus – connection to LAN, video and graphics workstation controllers (SCSI & FireWire)

· Expansion Slot – lower speed devices

PCI – peripheral component interconnect - High bandwidth, processor independent bus, that can function either as mezzanine or peripheral bus.

· PCI is especially designed to meet economically the I/O requirements of modern systems;

· Developed by Intel (1990) for its Pentium – based systems and widely adopted in PC, workstations and server systems; supports both single- and multiprocessor configurations;

· Synch timing and a centralized arbitration scheme – the use of bridges (acting as data buffers) keeps the PCI independent of the CPU speed.

shema..

[image: image2.png]CPU

~ HIGH-PERFORMANCE
BUS ARCHITECTURE
BRIDGE/
coNTROLLER oraw AUDIO VIDEO
- H PCIBUS H
s e oonso | I mcio —
EXPANSION BUS

BUS STRUCTURE: - PCI may be configured as a 32- or 64- bit bus

49 mandatory signal lines:

· System pins (clock and reset)

· Address and data pins: 32 multiplexed lines

· Interface control pins: transaction timing and control, coordination of initiators and targets

· Arbitration pins: individual => bus arbiter

· Error – reporting pins: parity , etc.

51 optional signal lines:

· Interrupt pins
· Cache support pins
· 64-bit extension pins
· Boundary scan pins (IEEE)
PCI COMMANDS:

· Interrupt acknowledge (for interrupt controlers)

· Special cycle(initiator broadcasts a message to one or more targets)

· I/O read and I/O write (initiator – I/O controller)

· Memory read(transfer of a burst of data, bursting ½ or less of a cache line, support writing back a line to memory)

· Memory read line(bursting > ½ to 3 cacahe lines)

· Memory read multiple(bursting > 3 cache lines)

· Memory write(at least 1 cache line)

· Configuration read and write(a master reads and updates configuration parameters of a PCI device – 256 internal reg`s)

· Dual address cycle (64 Bits)

· [image: image46.emf]Centralized synchronous scheme

· Each master has a unique REQ&GRANT signals – handshake to grant access to the bus

· Arbitration (for each transaction) algorithms alternatives: first-come-first-served, round robin, priority scheme)

· Hidden arbitration (|| data transfer)

shema..

· slide 12-14 – typical server system, microprocessor with hyper-threading, typical server platform

SCSI – Small Computer System Interface:

· An interface to external peripheral devices

· First popularized on the Macintosh in 1984

· Now widely used on Windows/Intel systems & many workstations

· Standard interface for CD-ROM drives, audio equipment, external mass storage devices

· Uses parallel interface with 8, 16 or 32 data lines

· SCSI is referred to as a bus, in fact devices are daisy chained together

· Each SCSI device has two connectors: for I/O

· All devices are chained together

· One end of chain is hooked into the host

· All devices function independently and may exchange data with one another or with the host system

· Data is transferred in message packets

shema..

[image: image3.emf]
· Asynchronous transfer mode – REQ/ACK handshake is required for every byte transfered

· Synchronous transfer mode must be negotiated

· Messages are exchanged btw initiators and targets for the SCSI interface (Command complete, Disconnect, Initiator Detected Error, Abort, Synchronous Data Transfer)

· The SCSI specification defines commands for direct and sequential access devices, printers, proccessors, CD-ROM`s, scanners, optical memory devices, communication devices

FIRE WIRE Serial bus: A high- speed alternative to SCSI and other small-system I/O interfaces

· FW is defined by the IEEE standard 1394 for a high-performance serial bus

Advantages:

· Very high speed, low cost and easy to implement
· Also used in consumer electronics(Digital camera`s and TV`s) – transports video images coming from digitized sources
· Provides a single I/O interface with a simple connector – a single port
FIRE WIRE CONFIGURATIONS:

· Daisy-chain configuration with up to 63 devices connected off a single port
· Up to 1022 FireWire buses can be interconnected using bridges
· Automatic configuration
· Hot plugging – it is possible to connect or disconnect peripherals without switching off the CS or reconfiguring it
· FireWire bus need not be a strict daisy chain, a tree-structured configuration is possible
· Example of WF Configuration – pic
shema..

[image: image47.png]ARBITRATION

=

l

|

PCI
ARBITER

GNT# REQ#

PCI DEVICE

GNT# REQ#

PCI DEVICE

GNT# REQ#

PCI DEVICE

GNT# REQ#

PCI DEVICE

PROTOCOLS:

· Standardize the interaction of the host system with the peripheral devices over serial bus

· 3 Layers:

· Physical layer: defines the transmission media & the electrical & signaling characteristics

· Link layer: describes the transmission of data in packets

· Transaction layer: defines a request-response protocol that hides the lower-layer details of FireWire from applications

· Arbitration – central arbiter (root)

· Fair arbitration

· Urgent arbitration

Accelerated Graphic Port Technology:

· AGP Technology accelerates graphics by providing a dedicated high-speed port for the movement of large blocks of 3D texture data btw the PC system memory and graphics controller
· The AGP interface significantly increases the bandwidth available to a graphic accelerator.
· AGP enables the hardware-accelerated graphics controller to execute texture maps directly from system memory instead of caching them in the relatively limited local video memory.
shema..

[image: image4.emf]
THE MESSAGE PASSING PROGRAMING MODEL

· MPI – The most popular specification for message passing, supporting parallel programming

· Virtually every commercial parallel computer supports MPI

· Libraries are available freely for use on every cluster

THE MESSAGE PASSING MODEL

· Multiple processors, each with local memory

· SAN supports message passing btw any pair of processors

· Each task of the task graph becomes a process

· Each process may communicate with any other process

· The number of parallel processes is fixed before starting the program. In general, this number remains constant in executing the program

· Each process computes its own variables and communicates with the other processes or I/O devices, alternatively

· Process use communications for information exchange(if the message contains data) and for synchronization (if the message contains no data) as well

Advantages of Message Passing Model:

· Efficient for wide spectrum of MIMD architectures

· Natural medium for multi-computer platforms, which do not support global address space

· It is possible to run programs with message passing on multiprocessor platforms - global variables are used as message buffers

· Stimulates the sysnthesis of parallel algorithms, that maximize local computations and minimize communications

· Provides high cache hit rate – efficient memory management

· Debugging programs with message passing is easier than programs with global variables

· It is easier to run deterministic programs

· Nondeterministic behavior makes debugging difficult – in various executions of the parallel program different processes acquire one and the same resources in different order

· The first version of the message passing library PVM (Parallel Virtual Machine) is developed in Oak Ridge National Laboratory

· PVM – parallel program execution on heterogeneous collections of parallel and sequential machines

Functions:

· MPI_Init – initializes MPI

· This is the first MPI function call by any MPI process
· Initializes the system in order to provide for MPI functions call
· It is not necessary the first executable statement, and it is not obligatory to be in main
· All ID’s begin with the prefix MPI_
· MPI_Comm_rank – determines the number of processes and MPI_Comm_Size

· After the initialization, every active process becomes a member of the communicator MPI_COMM_WORLD (default communicator)
· The communicator is an opaque object, providing media for interpocess message passing
· Defined communicators – processes are divided into independent communicating groups
· Within the communicator the processes have a strict order
· The position of the process is determined by it’s rank
· In a communicator of p processes, each process has unique rank (ID), varying from 0 to p-1
· A process may use its rank in order to find out for which part of the computation and data it is responsible for
· A process may call function MPI_Comm​​​_Rank in order to get it’s rank within the communicator
· Function MPI_Comm_Size may define the total number of processes within the communicator
· MPI_Reduce – reduction operation

· MPI_Finalize – shutdown MPI

· After finishing All MPI_ calls, the process calls MPI_Finalize to release all system resources (for ex., the memory allocated for it)
· MPI_Barrier – barrier synchronization

· MPI_Wtime – getting the time

· MPI_Wtick – precision of the timer

// липсва описание на останалите команди, да се допише
CLUSTER COMPUTING – PART 2

THE PROBLEM DOMAIN:

· The ever growing demands on greater and widely available computational power has determined a steady tendency of constructing clusters nowadays.

· The idea of clustering the available computers within one or more buildings and utilizing it as an integrated computational resource has been especially attractive and gives the opportunity to solve large applications in less time.

THE DESIGN OF PARALLEL ALGORITHMS:

· Adds a new dimension to the algorithmic design for scalable computer platforms

· The combination of the parallel application and the parallel computer platform, on which it is run, is called a parallel system
· The performance of the parallel system depends not only on the potential parallelism of the application, but on the architecture of the parallel computers as well.

· The main goal of parallel algorithms is to obtain maximum performance i.e. minimum execution time for the specific application on the given parallel computer platform.

[image: image48.emf]ARCHITECTURAL ASPECTS OF MULTICOMPUTER CLUSTERS

· Multi-computer clusters of the “shared nothing” architectural type, the processing nodes of which are basically workstations, either homogeneous or heterogeneous.

· The nodes are interconnected by an Ethernet commodity network, for the cluster and use standard communication protocols.

shema..

DESIGNING PARALLEL ALGORITHMS FOR MULTICOMPUTER CLUSTERS

· Parallelize a sequential algorithm(algorithmic equivalency should be considered in that case)
· Design brand new algorithm
· Make some efficient combination of existing sequential and/ or parallel algorithms to solve the problem.
// slide 38 до края липсват

BENCHMARKING:

The main goal is to obtain maximum speedup:

shema..

[image: image49.png]Programming emvironment layer (C, Fortran, Java, MPT, PVM)

Single - Job management system layer

High-Availability Subsystem Layer

platform
independent
software

platform
independent
software

platform
independent
software

Standard Communication Protocols

Ethernet Commodity Network

[image: image50.png]

[image: image51.png]Sn= 0’

O(n*/p)+O(nlogp)

CLUSTERS OF SERVERS AND WORKSTATIONS

· clusters of workstations = cluster of workstations(COW) = network of workstations (NOW)

1. Classification of clusters according Packaging

· Compact Cluster – nodes are packaged in 1 or more racks in a room, nodes are not attached to peripherals, called headless workstations, utilizes a high-bandwidth, low latency communication network

· Slack Cluster – nodes are attached to their peripherals i.e. they are complete SMP, workstations, and PCs. They may be located in different rooms, buildings, geographically remote regions.

2. Classification of clusters according Control

· Centralized – all the nodes are owned, controlled, managed and administered by a central operator (normally compact cluster)

· Decentralized – the nodes have individual owners; The owner can reconfigure, upgrade or even shut down the stations at every time

A slack cluster can be either controlled or managed in a centralized or decentralized fashion.

3. Classification of clusters according Homogeneity

· Homogeneous cluster – all nodes adopt the same platform
· Heterogeneous cluster – nodes of different platforms, process migration not feasible

4. Classification of clusters according Security

· Exposed intra-cluster communication – easy to implement, but an outside machine can access the communication paths, and thus individual nodes, using standard protocols (i.e. TCP/IP)
Disadvantages:

· Intra-cluster communication is not secure

· Outside communications may disrupt intra-cluster communications in an unpredictable fashion
· Standard communication protocols tend to have high overhead
· Enclosed intra-cluster communication – shielded from the outside world, a disadvantage is the lack of standard for efficient, enclosed intra-cluster communication
DEDICATED vs ENTERPRISE CLUSTER

Dedicated Cluster

· Typically installed in a desk side rack in a central computer room.

· Typically homogeneous configured with the same type of nodes.

· Managed by a single administrator group.

· Typically accessed via a front-end system

· Used as substitute for traditional mainframes or supercomputers

· Installed, used and administered as a single machine

· Executes both interactive and batch jobs

· Enhanced throughput and reduced response time

Enterprise Cluster

· Mainly used to utilize idle resources in the nodes

· Each node is usually a SMP, workstation, or PC, with all peripherals attached

· The nodes are individually owned by multiple owners; the owners` local jobs have higher priority than enterprise jobs

· The nodes are typically geographically distributed

· Configure with heterogeneous computer nodes, connected through a low-cost Ethernet

Clusters Architecture:

a. [image: image52.png]E 1

1+ 0((plog p)/n)

Shared – Nothing architecture: Nodes are connected through the I/O bus

b. Shared – Disk architecture:
For small scale availability clusters in business applications

c. Shared – Memory architecture:

The SCI is connected to the memory bus of the node via NIC module

shema..

shema..

shema..

[image: image53.png]PROCESSOR
&
CACHE

MEMORY

MEMORY /0 -
BRIDGE

DISK

NETWORK
INTERFACE
CIRCUITRY

PROCESSOR
&
CACHE

MEMORY

MEMORY /0 -
BRIDGE

DISK

LAN

NETWORK
INTERFACE
CIRCUITRY

[image: image54.png]DISK

PROCESSOR PROCESSOR
& &
CACHE CACHE
MEMORY MEMORY
MEMORY /0 - MEMORY /0 -
BRIDGE BRIDGE
DISK
NETWORK SHARED NETWORK
INTERFACE DISK INTERFACE
CIRCUITRY CIRCUITRY

CLUSTERS DESIGN ISSUES:

· Availability Support – lots of redundancy of processors, memories, disks, I/O devices, networks, operating system images, etc.
· Single system image - by clustering many workstations, we get a single system that is equivalent to one huge workstation, a mega-station
· Job management – batching, load balancing, parallel processing
· Efficient communication - often use commodity networks (Ethernet, ATM) with standard communication protocols (high overheads), long wires imply larger latency, clock skew and cross-talking problems
AVAILABILITY SUPPORT FOR CLUSTERING

RAS – Reliability, Availability, Serviceability

· Reliability – measures how long a system can operate without a breakdown
· Availability – indicates the percentage of time that a system is available to the user (the percentage of uptime)
· Serviceability – how easy it is to service the system, including hardware and software maintenance, repair, upgrade, etc.
AVAILABILITY CONCEPT:

· The system’s reliability is measured by the mean time to failure MTTF, which is the average time of operation before the system (or a component) fails

· The metric for serviceability is the mean time to repair MMTR the system

· Availability = MTTF/(MTTF+MTTR)

AVAILABILITY TECHNIQUES:

· Increasing MTTF

· Reducing MTTR

· Isolated redundancy – using redundant components; when the primary component fails, the service it provided is taken over by the backup component; the primary and the backup components are isolated from each other, so that they are not subjected to the same cause of failure;
The IBM SP2 communication subsystem:

A good example of isolated redundancy design
· All nodes are connected by two networks: an Ethernet and a high performance switchn(HPS)
· Each node uses two separate interface cards to connect to these networks
· Two communication protocols: a standard IP and user-space (US) protocol; each can run on either network; if either network or protocol fails, the other network or protocol can take over
SINGLE POINTS OF FAILURE IN CLUSTERS:

1. LAN network;

2. LAN adapter of the server node;

3. server;

4. SCSI Bus;

5. External disk.

In order to eliminate all single point of failure cluster resources are duplicated , for example dual SCSI bus, 2 LAN Adapters, 2 external disks.

REDUNDANT COMPONENTS CONFIGURATIONS:

· Hot standby – a primary component provides service, a redundant backup component is ready (hot) to take over when the primary fails (economical design – one standby component to back up multiple primary components)
· Mutual Takeover - all components are primary, 1 component fails – its workload is distributed to other components
· Fault tolerant – N components deliver the performance of only one component
· Failover - the most important feature demanded in current clusters for commercial applications; when a component fails, the remaining system takes over the services originally provided by the failed component; provides failure diagnosis, failure notification and failure recovery;

· Failure diagnostics in a dual network cluster: Each node has a heartbeat daemon that periodically sends a heart beat message to the master node through both networks:
· The node failed

· A connection to a network failed

CLUSTER PRODUCTS:

These include both commercial products and custom-designed clusters. Nodes are mostly PCs, workstations and SMP servers. The clusters usually have tens of nodes, only few clusters exceed hundred nodes.

Most clusters use commodity networks such as Fast Gigabit Ethernet, FDDI rings, ATM or Myrinet switches besides regular LAN connections among the nodes.

SUPPORTING TREND OF CLUSTER PRODUCTS:

· High End Mainframes

=> Minicomputers

=> UNIX Workstation Clusters

=> High Volume NT Clusters

shema..

· Cluster computer architecture

[image: image55.png]PROCESSOR
&
CACHE

MEMORY

MEMORY /0 -
BRIDGE

DISK

NETWORK
INTERFACE
CIRCUITRY

PROCESSOR
&
CACHE

MEMORY

MEMORY /0 -
BRIDGE

DISK

SCI

NETWORK
INTERFACE
CIRCUITRY

· PVM/ MPI/ RSH

CPU ARCHITECTURE

Sequential Instructio Processing;

	i
	i
	i
	i
	i
	i
	i
	i

	FI
	DI
	EA
	RO
	EO
	WR
	FI
	DI

- FI – Fetch Instruction

- DI – Decode Instruction

- RO – Read Operands

- EO – Execute Operation

- Write Resul
Instruction Pipeline Hazards:

1.. Resource confliitts..

2.. Procedural dependencies

(caused notably by branch

instructions)

3.. Data dependencies..

Overlap and Pipelining

- Methods, used to increase the speed of

operation of the CPU

- Pipelining – splitting the computation into a

series of steps - a form of parallel

computation

- Overlap – a system design with two or more

clearly distinct functions performed

simultaneously

- Pipeline data transfer – info is passed from

one stage of the pipeline to the next:

1. Asynchronous method

2. Synchronous method
Resource conflicts
- Concurrent requests off tthe same

resource at the same tiime (memory or

functional units)

- Resolved by duplicating tthe resource

- Memory conflicts elimination::

1. One pipeline unit ffor readiing data

operands or writing data to memory

2. Providing separate instruction and data caches L1

1. Asynchronous method

- A pair of “handshaking signals”

- Provides greatest flexibility

- The fastest pipelines

- Variable length FIFO buffers between stages

2. Synchronous method (popular)

- One timing signal

- Limited by the slowest unit

- Staging latch between units

- Instead, path delays can be equalized
Procedural Dependencies

- Execution order is unknown priior tto

iinsttructtiions executtiion

- Maiin cause – branch instructions

- Unconditional branch instruction-allll

instructiions iin tthe pipeline are

abandoned and the pipeline is cleared

(emptied)i..e.tthe pipeiine breaks down

- Conditional branch instruction -similar

efffect iin case tthe branch iis ttaken
Performance Issues:

Tinit pipeline  (n-1)

Sup=T seq/ T pipeline= sn/ n + (s-1)

Efficiency= Sup / n

- n-stage pipeline

- s - # of instructions being processed

- - stage delay (cycle)

- Tinit_pipeline – time for pipeline initialization

- Tseq – time for sequential processing

- Tpipeline – time for pipelined processing

- Sup - speedup

Pipeline Speedup is determined by the # of its stages
Static Prediction

-Makes prediction before execution

- The format of the branch instruction has additional bit to indicate the prognosis for the branch outcome

-A new set of branch instructions:: select PC next or select target next

- The responsibility of compiler

-Attractive for RISC
Prediction Logic and Branch History
- Make dynamic prediction based upon

run - time execution history

- Prediction Look-up Table – tthe branch

address,, tthe branch ttargett address,, a

biitt ffor previous predction

- Branch Target Bufffer – a branch

hiisttory ttablle,, iimplementted in a cache

(ffully associative or set-associative

type)
Output Dependencies (write-after-write hazard)

1. ADD R3, R2, R1 ; R3 = R2 + R1

2. SUB R2, R3, 1 ; R4 = R3 - 1

3. ADD R3, R2, R5; R3 = R2 + R5
- A sort of a resource conflict

- The register R3 is being reused

- To eliminate this hazard: use another register
Delayed Branch Instructions

- Filling up the bubbles in the pipeline with instructions independent of the branch outcome (or NOP at the least)

ADD R3, R4, R5

SUB R2, R2, 1

BEQ R2, R0, L1

…..

………

L1: …………………..

SUB R2, R2, 1

BEQD R2, R0, L1

ADD R3, R4, R5

…..

…..

L1: …………………..
SUPERSCALAR PROCESSORS
-Operate upon single operands such as

integers

-Execute more than one scalar instruction

concurrently

-Require more than one instruction pipeline

- Fetch more than one instruction

simultaneously

-Design1 – duplicate the pipelines –

Pentium – pipeline V for simple

instructions and pipeline U for complex

(microcoded) instructions

Data Dependencies (read-after-write hazard)

- The result of the ith instruction is

used as an operand of the (i+1)th
instruction

- Data dependencies types:

1.. True (flow) data dependency

2.. Antidependency

3.. Output dependency
-Design 2 – integrated approach – superscalar

design with specialized execution units:

- Instruction buffers – hold instructions waiting

for their operands

- Linear pipelines – in-order issue of

instructions

- Pipelines with specialized execution units

– out-of-order issue of instructions –

require in-order completion of instructions
Antidependencies (write-after-read hazards)

- An instruction writes to a location which

has been read by a previous instruction

1. ADD R3, R2, R1 ; R3 = R2 + R1

2. SUB R2, R3, 1 ; R4 = R3 - 1
Instruction Window Contents

	Instruction
	Opcode
	Register Destination ID
	Operand 1
	Register Operand 1 ID
	Operand 2
	Register Operand 2 ID

	1
	Opcode 1
	ID 1
	VALUE
	
	
	ID 1A

	2
	.. 2
	ID2
	VALUE
	
	
	ID 2A

	3
	 3
	ID3
	VALUE
	
	VALUE
	

	4
	… 4
	ID4
	VALUE
	
	VALUE
	

	5
	… 5
	ID5
	VALUE
	ID
	
	ID 5A

Out-of-order Instruction Issue
- Multiple functional units

- Multiple ALU’s can be implemented

- Instruction buffer called an instruction window is implemented between the fetch and execution stages

- Instructions are issued from the window when the operands of the instructions are available and the respective functional unit is free!

- Instruction windows are implemented in 2 ways; 1. Centralized window

2. Distributed window

REORDER BUFFER

- FIFO queue with entries that are

dynamically located to instruction register

results

-When an instruction whiich writes to a

register is decoded, it is allocated an entry

at the top of the queue

- Instruction results are written to the

reorder buffer entry

-When the entry reaches the bottom of the

queue, and the value has been written, it

is transferred to the register file

Internal memory(Register, Cache Level1, Cache Level2,3, Main memory)

External memory(Hard disk, Removable Memories(Floppy, CD, Optical disks))

The probability that the required word is already in the cache depends upon the program and on the size and organization of the cache; typically 70-90% of references will find their words in the cache (hits). A miss – a reference to the main memory is necessary!

CACHE HIT RATIO – THE PROBABILTY THAT A WORD WILL BE FOUND IN THE CACHE

h=Number of times required word found in cache/Total number of references
CACHE MISS RATIO: m=1-h

shema..

shema..

[image: image5.emf]
[image: image6.emf]
CACHE MEMORY ORGANIZATIONCThe problem of mapping the info held in the main memory into the cache must be totally implemented in hardware ! FULLY ASSOCIATIVE MAPPING A fully associative cache requires to be composed of associative memory (content addressable memory, CAM) holding both the memory address and the data for each cached line.The least significant part of the address selects the particular byte, the next part selects the word , and the remaining bits form the address are compared to the address in the cache.

shema..

shema..

shema..

shema..

shema..

[image: image7.emf]
[image: image8.emf]
[image: image9.emf]
[image: image10.emf]
[image: image11.emf]
[image: image12.emf]
MAIN PROBLEMAIN PROBLEM – CACHE COHERENCE PROBLEM

WRITE OPERATIONS _WRITE-THROUGH MECHANISM – every write operation to the cache iis repeated to the main memory (enhanced by iincorporating buffers,, freeing the cache for subsequent accesses) _WRITE-BACK MECHANISM – the write operation to the main memory iis only done at lline replacement time

REPLACEMENT ALGORITHMS

_ Random replacement algorithm

_ First-iin-ffirst-out replacement algorithm

_ Least recently used (LRU)

1. Counters of references (iindicating the age of llines)

2. Register stack (1 register ffor each lline) – the most recently used lline iis on the top

3. Reference matrix (of status bits)

4. Approximate methods (llines are divided iinto pairs and 1 status iit iis associated with each pair,, LRU iis applied,, fforming a binary tree ffor the pairs of llines)

IMEPLEMANTATION

1. Is defined as the actual hardware structure, logic design, and data path organization of a particular embodiment of the architecture.

2. The Implementation if the machine has two components:

a. _Organization

b. _Hardware

3. The implementation may encompass IC Design , Packaging, Power & Cooling.

​​​​​​​​​​* The INSTRUCTUION SET ARCHITECTURE refers to the actual programmer – visible instruction set and serves as the boundary btw hardware and software.

* The term ORGANIZATION includes the high-level aspects of a computers` design such as the memory system , the bus structure, and the design of the internal CPU.

* HARDWARE is used to refer to the specifics of a machine, including the detailed logic design and the packaging technology of the machine.

shema..

[image: image13.emf]
VON NEWMANN ARCHITECTURE ATTRIBUTES:

· Computation driven and controlled by instruction flow (Stored programm)

· Sequential computational model = i+1 instruction is started after the completion of the i-th instruction.

· Programm counter

· Assignment statement

PARALEL COMPUTER ARCHITECTURES

· Evolutional architectures – derived from Von Newmann architecture

· Radical computer architectures (Data flow computers, reduction architectures, etc) – no instructions, no program counter, no assignment statements)

shema.. (mnogo)

[image: image14.emf]
[image: image15.emf]
[image: image16.emf]
[image: image17.emf]
[image: image18.emf]
[image: image19.emf]
[image: image20.emf]
FUNDAMENTALS OF COMPUTER DESIGN

Computer design emphasizes on both architectural innovations and technological improvements!

There are 3 main computing markets:

· Desktop Computers

· Low-End Computers

· High –End heavily Configured workstations

· Tends to optimized price performance

· Newest highest performance-processors appear

· Cost reduced microprocessors and systems

· PC Space is focused on clock rate, leading to poor decisions by consumers and designers

· Servers - the backbone of large-scale enterprise computing

· Applications: brokerage operations, credit card authorization, package shipping services, home shopping channels, catalog sales center, airline reservation center…

· Emphasis on availability and scalability

· Efficient throughput in terms of transactions per minute or Web pages served per second

· Responsiveness to an individual request remains important

· Embedded computers – the fastest growing portion of the computing market

· Everyday machines – microwaves, washing machines

· Digital devices – palmtops, cell phones, network router

· Video games

· Digital signal processors (DSP`s) – Use of assembly language, standardized operating systems

· The widest range of processing power and cost

· The primary goal is to meet the performance need at minimum price

· The need to minimize memory and power

THE TASKS OF A COMPUTER DESIGNER

· Determine the important attributes for a new machine

· Design a machine maximizing performance while staying within cost and power constraints

· Optimizing the designers requires familiarity with a very large range of technologies, from compilers and OS to logic design and packaging

LEVEL OF SOFTWARE COMPATIBILITY

· Determines amount od the existing software for machine:

· At programming language, most flexible for designer; need new compiler

· Object code or binary code compatible: ISA is completely defined – little flexibility – but no investment in software or porting programs needed

OPERATING SYSTEM REQUIREMENTS

· Size of address space – may limit applications;

· Memory management – required for modern OS; may be paged or segmented;

· Protection – page vs. segment protection

STANDARDS

· Floating point – Format and arithmetic: IEEE 754 , special arithmetic for signal processing

· I/O Bus – For I/O Devices PCI, Ultra SCSI, etc.

· Operating system:

PARALLEL COMPUTEPARALLEL COMPUTER ARCHITECTURES

•Evolutional architectures – instruction driven

•Radical architectures

-Data flow computers (data-driven)

-Reduction architectures (demand-driven)

-Parallel architectures for AI (situation-driven)

•Flynn’s classification

-Class “Single Instruction Flow Single Data Flow” (SISD) comprises computers of von Newmann’s architecture, i.e. computers of sequential model of computation

-Class “Single Instruction Flow Multiple Data Flows” (SIMD) – single instruction flow is executed over multiple data flows on multiple processors – vector processors, array processors.

-Class “Multiple Instruction Flows Multiple Data Flows” (MIMD) encompasses multiprocessors and multicomputers.

-Class “Multiple Instruction Flows Single Data Flow” (MISD) – controversial (debatable)

PARALLESCALABLE PARALLEL ARCHITECTURES SCALABILITY DIMENSIONS:

•Resource scalability: (resource expansion of the parallel computer platform) – increasing machine size i.e. increasing the number of CPU’s, memory capacity, cache memories, disks, enhancing software, etc.

•Application scalability (in problem size) –enhancing the performance in solving problems with scalable workload;

-Executing given application on a specific parallel computer sets up the “combination application/machine” and is called

PARALLEL SYSTEM

•Technology scalability - provides the opportunity for system adaptation to innovation technologies: 3 aspects: generation scalability, space and heterogeneity

Architectural styles of scalable parallel computers:

shema..

SHARED-NOTHING ARCHITECTURE:
[image: image56.emf]
SHARED-MEMORY ARCHITECTURE:

[image: image21.emf]
SHARED-DISK ARCHITECTURE:
 [image: image22.emf]

The overall structure of a computer system is called the macro-architecture, while the structures of the processor and shell are called micro-architecture. Most of the contemporary commercial parallel computers are packaged in a rack. They are implemented with commodity hardware and adequate software components. The MIMD architectural class (Flynn’s classification) encompasses 5 physical machine models: parallel vector processors (PVP), symmetric multiprocessors (SMP), massively parallel processors (MPP), distributed shared memory machines (DSM), and computer clusters (clusters of workstations - COW).

[image: image23.emf]

 Parallel vector processor Symmetric multiprocessor

 Massively Parallel Processor

[image: image57.emf] [image: image24.emf]

 Distributed Shared Memory Machine

< CLUSTER OF WORKSTATIONS[image: image58.emf]

Semantic attributes of the physical machine models: homogeneity, synchrony, interaction mechanism of parallel processes, address space, memory model.

•Synchrony – all 5 architectural classes are of the asynchronous type or of the loosely synchronous type.

•Interaction mechanism of parallel processes – in the case of PVP, SMP and DSM - shared variable (shared memory–global address space)

The interaction mechanism of the MPP and COW is based on message passing and the utilization of multiple individual address spaces.

Memory access can be:

• UMA (Unified Memory Access) – PVP & SMP

• NUMA (Non-Unified Memory Access) –DSM

• NORMA (No Remote Memory Access) – MPP & computer clusters

MULTIPROCESSOR: An asynchronous MIMD machine interacting through shared variables

MULTICOMPUTER: An asynchronous MIMD machine interacting through message passing

The parallel computer architecture is of the shared memory type (multiprocessor) if each of the processors has a direct access to each local or remote memory within the system. Otherwise, the architecture has no shared memory (multicomputer). The key word is “direct access”, meaning that executing the instructions load & store an arbitrary memory cell within the system is accessed. Actually the remote memory access is not direct, but it is performed through program layer, for ex : library routines, called by the user. This results in different latencies off the memory accesses.

Symmetric multiprocessors (SMP):

• SMP systems are heavily used in commercial applications, such as data bases & on-line transaction systems.

• It is important for the system to be symmetric, in that every processor has equal access to the shared memory, the I/O devices, and the operating system services. Being symmetric, a higher degree of parallelism can be released, which is not possible in an asymmetric (or master-slave) multiprocessor system.

• Limitations - the centralized shared memory & the bus or crossbar system interconnect, which are both difficult to scale once built.

Massively Parallel Processors:

• Commodity microprocessors in the nodes

• Physically distributed memory

• High-speed System area network

• Can be scaled up to hundreds and even thousands of processors

• Asynchronous MIMD machine

• The program consists of multiple processes, each having its private address space.

• Processes interact by passing messages.

• MPP’s must provide universal systems for information processing which support all kinds of applications (engineering and commercial), various algorithmic paradigms and different operational modes.

• Architectural aspects - asynchronous MIMD and the standard programming model with message passing (PVM – Parallel Virtual Machine & MPI – message passing interface).

• Tightly coupled MPP’s are controlled by distributed OS. Generally, microkernel of the OS is executed in each node.

• Application programming level – standard programming languages (C, FORTRAN, HPF, PVM & MPI).

Computer clusters:

• A computer cluster is a single computing resource!!!

• Custer node – each node is a complete computer (CPU, cache, memory, disk, and some I/O).

• Nodes are interconnected by Ethernet, FDDI, Fibre-Channel or ATM switch.

• Within the node the network interface is loosely coupled with the I/O bus. This is in contrast with the tightly coupled network interface of the MPP’s, which is connected with the memory bus of the node.

• A complete, standard OS resides on each node. A node can have more than 1 CPU, but only one copy of the OS image.

•A cluster is a collection of complete computers (nodes) that are physically interconnected by a high-performance network or a local-area network (LAN).

•Typically, each node can be an SMP server, or a workstation or a personal computer.

•All cluster nodes must be able to work collectively as a single, integrated computing resource in addition to fulfilling the conventional role of servicing the individual users.

Superservers:

•A cluster of homogeneous SMP servers is called a superserver – Sun Ultra Enterprise 1000 B SGI POWER CHALLENGE.

•Superservers combine message passing and the shared memory interaction mechanisms – hybrid progr. models.

The supercomputer IBM ASCWhite:

• The supercomputer IBM ASCWhite (2000 D.) is a cluster, interconnecting 512 commercial computers RS/6000 SP, comprises totally 8192 HIJK-LJIM, each node has 16 processors, total memory capacity - 6 NO, disks capac. – 160 NO.

• Maximum performance - 7 226 GFlops or 7,226 TFlops. Its performance equals the integrated performances of 50 000 desktop computers.

shema..

[image: image25.emf]
[image: image59.emf]PERFORMANCE METRICS & BENCHMARKS FOR PARALLEL COMPUTER SYSTEMS

[image: image26.emf]
The impact of the processors’ number over parallel system’s performance

[image: image60.emf]
Scalability & Speedup Analysis

1. Amdahl’s Law: Fixed Problem Size

α– the percent of W that must be executed sequentially, known as the sequential bottleneck of a program

Assuming all overheads are ignored, a fixed-load speedup is defined by:

[image: image27.emf] [image: image28.emf] [image: image29.emf]
Now let us incorporate into Amdahl’s law the overheads. The fixed-load speedup becomes:

[image: image30.emf]
This extended Amdahl’s law says that we must not only reduce the sequential bottleneck, but also increase the average granularity in order to reduce the adverse impact of the overhead.

The performance of a parallel program is limited not only by the sequential bottleneck, but also by the average overhead.

GUSTAFSON’S LAW (1988): FIXED TIME

This concept achieves an improved speedup by scaling the problem size with an increase in machine size! Scaling for higher accuracy – finite-difference method – coarse grids (less accuracy) & finer grids (greater accuracy)

[image: image31.emf]
This equation is known as Gustafson’s law, which states that the fixed-time speedup is a linear function of n, if the workload is scaled up to maintain a fixed execution time -> the sequential fraction is no longer a bottleneck.
SUN AND NI’s LAW (1993): MEMORY BOUNDING

Generalizes Amdahl’s & Gustafson’s laws to maximize the use of both CPU & memory capacities. Especially for multicomputers – the total memory capacity increases linearly with the # of available nodes

[image: image32.emf]
- G (n) =1 -> the problem size is fixed; the memory-bound speedup becomes equivalent to Amdahl’ law

- G (n) =n -> the workload increases n times when the memory is increased n times -> identical to Gustafson’s law

- G (n)>n - >the computational work increases faster than the memory requirement (memory bound model-gives a higher speedup)

SUMMARY OF SPEEDUP LAWS

-If the purpose is to reduce the execution time of a fixed-workload problem, the scalability of the system can be defined as the fixed-load speedup, governed by the generalized Amdahl’s law

-To achieve the best scaled speedup, fixed-memory scaling should be used, which is governed by Sun & Ni’s law

-Gustafson’s fixed-time scaling is a compromise between fixed-load and fixed-memory scaling – guarantees Tpar of the scaled workload won’t exceed Tseq of the original workload, barring any overhead

[image: image33.emf] [image: image34.emf]
ISOPERFORMANCE MODELS

The term system refers to a pair comprised of an application (workload) and a parallel computer platform

ISOEFFICIENCY – characterizes system scalability E=f(W, n) ; if we fix the efficiency to some constant (e.g., 50%) and solve the efficiency equation for W, the resulting function is called the isoefficiency function of the system [Grama] The isoefficiency metric provides a useful tool to predict the required workload growth rate with respect to the machine size increase [Kumar]

-ISOSPEED – a constant speed is preserved while scaling up both machine size and problem size at the same time [Sun & Rover]

Characterizes system scalability

-ISOUTILIZATION – predicts the workload growth rate with respect to the increase of machine size, while maintaining the same utilization & it is consistent with execution time i.e., a more scalable system always has a shorter execution time. Systems with a smaller isoutilization are more scalable than those with a large one.

PARALLEL COMPUTING

BECHMARKS

-Splash & Spllash-2 – numerical computing benchmarks developed at Stanford University and widely used for distributed shred--memory machines

-The Perfect benchmark suite developed at the University of Illinois for evaluating parallelizing compiler systems and techniques

-The NAS Parallel Benchmarks (NPB) developed by the Numerical Aerodynamic Simulation (NAS) program at NASA Research Centre for the performance evaluation of parallel supercomputers

NPB provides MPI-based FORTRAN source-code implementations. It consists of 5 kernels:

1. The EP (Embarrassingly Parallel) Benchmark estimates the upper achievable limits for floating point performance of a parallel computer

2. The IS (Integer Sorting) Benchmark is a parallel sorting program based on bucket sort

3. The MG (MultiGridmethod) Benchmark solves a 3D scalar Poisson equation

4. The CG (Conjucate Gradient method)

Benchmark computes the smallest Eigen value of a symmetric positive definite matrix

5. The FT Benchmark solves a 3D partial differential equation using an FFT-based spectral method.

-The PARKBENCH (PARallel Kernels and BENCHmarks) committee was founded at Supercomputing’92 – a consistent set of performance metrics and notations was established; the current benchmarks are for distributed-memory multicomputers, coded with Fortran 77 plus PVM (Parallel Virtual Machine) or MPI (Message Passing Interface) for message passing

-Business and TPC benchmarks – the most widely used commercial application benchmark; developed by the Transaction Processing Performance Council (database & transaction processing benchmarks)

-SPEC Benchmark Family – the speed metrics measure the ratios to execute a single copy of the benchmark, while the throughput (rate) metrics measure the ratios to execute multiple copies of the benchmark

PERFORMANCE EVALUATION:

· Measuring and reporting performance

· For users of desktop machines – reducing response time (the time btw the start and the completion of an event – also execution time)

· For managers of large data processing centers – increasing throughput (number of tasks completed per unit)

· execution time (Machine A) / execution time (Machine B) = n – колко пъти машина А е по-бърза от В
· Execution time is reciprocal to performance!!! – increasing performance means decreasing execution time!

· Response time – latency to complete a task, including CPU time, disk accesses, memory accesses, I/O activities, OS overhead, etc

· CPU time:

· User CPU time – the time, spent in the program;

· System CPU time – the time spent in the OS performing tasks requested by the program

CHOOSING PROGRAMS TO EVALUATE PERFORMANCE:

· Workload – the mixture if programs & OS commands that users run on a machine

· 5 levels of programs listed in decreasing order of accuracy and prediction:

· 1. Real applications – compilers of C, text-processing software, Photoshop (Portability problems arising from dependencies on the OS complier)
· 2.Modified (scripted) applications - focuses on a particular aspect of performance
Scripts are used to simulate application programs so as to reproduce interactive behavior on a desktop system or simulate complex multi - user interaction on a server system.

· 3. Kernels – extracted small key pieces from real programs used to evaluate performance: “Livermore Loops”, “Linpack”

· 4. Toy benchmarks – comprise typically 10 -100 lines of code and produce a priory known results(Erathostenes, Puzzle, Quicksort)

· 5. Synthetic benchmarks – created artificially to match an average execution profile: the most popular are “Whetstones”, “Dhrystones”

· BENCHMARK SUITES – collection of benchmarks created and used to measure the performance of processors with a variety of applications.

· SPEC (Standard Performance Evaluation Corporation) – създава стандартни benchmark suites

DESKTOP BENCHMARKS:

2 broad classes: CPU – intensive benchmarks & Graphics – intensive benchmarks

The SPEC benchmarks are real programs, modified for portability and the role of I/O is minimized.

· The integer benchmarks vary from part of a C compiler to a VLSI place-and-route tool to a graphics application.

· The floating point benchmarks include code for quantum chromodynamics, finite-element modeling , and fluid dynamics.
The SPEC CPU suite is useful for CPU benchmarking for both desktop and single-processor servers.

SERVER BENCHMARKS:

· Measurement SPECrate - a simple throughput –oriented benchmark is constructed by running multiple copies of each SPEC CPU benchmark on a multiprocessor.

· SPECSFS (A file server benchmark) using a script of file server requests; It tests the performance of the I/O system (both disk & I/O) as well as the CPU

· SPECWeb is a Web Server benchmark that simulates multiple clients requesting both static and dynamic pages from a server, as well as clients posting data to a server.

TRANSACTION PROCESSING:

TPC (Transaction Processing Council) – vendor independent

All the TCP benchmarks measure performance in transactions per second, including a response time requirement !

· TPC-W is a Web-based transaction benchmark that simulates the activities of a business oriented transactional Web server exercising the database system as well as the underlying web server software.

EDN embedded Microprocessor Benchmark Consortium (EEMBC, pronounced “embassy”):

The EEMBC consists of 34 kernels falling in 5 classes:

· Automotive/ industrial

· Consumer

· Networking

· Office automation

· Telecommunications

[image: image61.emf]AVERAGE of the execution time: that tracks total execution time is the arithmetic mean, where TIME is the execution time for the i-th program of total n in the workload.

[image: image62.emf]
Weighted execution time: A weighting factor is assigned to each program to indicate the relative frequency of the program in the workload.

Amdahl`s Law:

[image: image35.emf]
Or

[image: image36.emf]
[image: image63.emf]
The Overall Speedup:

· An important corollary of Amdahl`s law is that if an enhancement is only usable for a task, we can not speed up the task by more than the reciprocal of 1 minus that fraction!

· Amdahl`s law can serve as a guide to how much an enhancement will improve performance and how to distribute resources to improve cost-performance.

SYSTEM AREA NETWORKS (SAN) FOR PARALLEL COMPUTERS
Goals : The jjob of an interconnection network in a parallel machine iis to transfer iinformation from any source node to any desired destination node,, in support of the network transactions that are used to realize the programming model.. It should accomplish this task with as small a latency as possible,, and iit should allow a llarge number of such transfers to take place concurrently.. IIt should beiinexpensive relatiive to the cost of the rest of the machine..
-> The network is composed of links and switches

->A link is a bundle off wires or fibers that carries an analog signal

-> A transmitter converts digital info at one end into an analog signal that is driven down the link and converted back iinto digital signals bytthe receiver at the other end

-> The physical protocol ffor converting between streams of digital symbols and an analog signal forms the lowest layer of the network design

-> The transmitter,, link and receiver collectively form a channel for digital information flow between switches (or NII) attached to the link

-> The llink -llevel protocol segments tthe streams of symbols crossing a channel iintollarger llogical units,, called packets or messages

-> Switches steer(direct) each unit arriving on an input channel tto tthe appropriate output channel

-> Processing nodes communicate across a sequence off llinks and switches

-> The node - level protocol embeds commands for the remote CA within the packets or

messages exchanged between the nodes to accomplish network transaction

-> A channel is a physical link between host or switch elements; it has a width w and a signaling rate f=1/T (for cycle time T), which together determine the channel bandwidth b=w.f

-> the amount of data transferred across a link in a cycle is called a physical unit, or phit
_ Many networks operate asynchronously rather than being controlled by a single global clock

_ The network cycle time is defined as the time to transmit the smallest physical unit of information, a phit

_ For parallel architectures it is convenient to think about the processor cycle time and the network cycle time in common terms

_ The minimum unit of information that can be transferred across a link and either accepted or rejected is called a flow control unit, or flit (as small as a phit or as large as a packet)
(12 slide)

_Switches connect a fixed number of input channels to a fixed number of output

channels;; this number is called the switch degree

_ The input port has a synchronizer to align the incoming data with the local clock domain (a FIIFO providing some degree off buffering)

_ The control logic must be able to determine the output port required by each incoming packet and to arbitrate among input ports that need to connect to the same input port

(14)

_ FDDII – Digital Equipment developed the shared media Fiber Distributed Data

Interface technology which uses optic fiber rings to provide 100-200 Mbps

transmission between workstations

_ FDDII can be used in full duplex mode

_A drawback of FDDII is its inability to support multimedia traffic

_GIIGA switch was designed as a cluster interconnect for Alpha workstations & servers

_Using a FFDI full-duplex technology (FFDT) this crossbar can connect up to 22

FDDII ports in 100 Mbps
(22)

_Myrinet is a Gbps packet switched network by Myricom,, Inc., used to build a

Myrinet LAN for connecting desktop workstations,, PCs, an in-cabinet multicomputer cluster, and a single-board multiprocessor cluster

_ It is based on multicomputer and VLSII technollogy developed at the University of Southern California

_ The Myrinet can assume any topology

_Variable-length packet format

_Cut-through crossbar switches

_An 8-port Myrinet switch achieves bandwidth of 10.24 Gbps
(24)

A network is characterized by its topology, routing algorithm, switching strategy, and flow control mechanism!

_ The topology is the physical interconnection structure of the network graph

_Direct networks have a host node connected to each switch

_ Indirect networks have hosts connected only to a specific subset of the switches, which form the edges off the network

_Hosts generate & remove traffic

(31)

_Diameter of the network- the length of the maximum shortest path between any two nodes

_Routing distance between a pair of nodes – the number off links traversed along the route

_Average distance – over all pairs of nodes (the expected distance between a random pair off nodes)

_Separating edges – the graph is broken down into two disjoint graph

(38)

Switching strategy

_Circuit switching – the path from the source to the destination is established and reserved until the message is transferred (used in phone systems)

_Packet switching – packets are individually routed from the source to the destination

(typically allows better utilization off network resources)

(41)

--------------------------------------0---------------------------------
PARALLEL ABSTRACT COMPUTER MODELS

Df: A parallel machine model (programming model, type architecture, conceptual model, or idealized model) is an abstract parallel computer from the programmer’s

viewpoint, analogous to the von Newmann model for sequential computing. Such a model must characterize those capabilities of a parallel computer that are fundamental for parallel computation.

A parallel machine model can be characterized by its semantic & performance attributes

SEMANTIC ATTRIBUTES

1. HOMOGENEITY – characterizes how alike the processors behave when executing a parallel program

2. SYNCHRONY – how tightly synchronized the processes are

3. INTERACTION MECHANISM – how parallel processes interact to affect the behavior of one another

4. ADDRESS SPACE – the set of memory locations accessible by the process

5. MEMORY MODEL – the handling of shared memory access conflicts (consistency rules)

PERFORMANCE ATTRIBUTES

The PRAM Model

- MIMD

- Fine grain

- Tightly synchronous

- Zero overhead

- Shared variable

- The machine size can be arbitrarily large

- The basic time step is called a cycle

- Within a cycle, each processor executes exactly one instruction: Read (Mi), Compute (Mi), Write (Mi)
- All processors implicitly synchronize at each cycle; The synchronization overhead is ;

assumed to be zero

- The time complexity of most PRAM algorithms is expressed as a function of the size of the problem N & the machine size n

- Unrealistic assumptions: zero communication overhead & instruction -level synchrony

Semantic attributes :

1. Homogeneity

- PRAM (1) SISD

- PRAM (n) MIMD

- SIMD – at each cycle all processors execute the same instruction

- SPMD – Single-Program-Multiple-Data -> all processors execute the same program, parameterized by the processor index

2. Synchrony

- Synchronous at instruction level

At each cycle, all memory read op must be performed before processors may proceed

- (real MIMD parallel computers are asynchronous) – each process executes at its own speed, independent of the speed of other processes
3. Interaction mechanism

- Processes interact through shared variables (or shared memory) – An asynchronous MIMD machine interacting through shared variables is called a multiprocessor

- An asynchronous MIMD machine interacting through message passing is called a multicomputer

4. Address Space

- A single address space

- All processes have equal access time to all memory locations - UMA

5. Memory Model

- Cosistency rules

-> EREW – Exclusive Read Exclusive Write (a memory cell can be read or written by at most one processor at a time

-> CREW – Concurrent Read Exclusive Write (at each cycle a memory cell can be read by multiple processors, but can be written by at most one processor)

-> CRCW - Concurrent Read Concurrent Write CRCW (common), CRCW (random), CRCW (priority)

The BSP Model

Bulk Synchronous Parallel Model

- Proposed by Leslie Valient of Harvard University to overcome the shortcomings of the PRAM model, while keeping its simplicity

- A BSP computer consists of a set of n processor/memory pairs (nodes) interconnected by a communication network

- A BSP program has n processes, each residing on a node

- The basic time unit is a cycle (or time step)

- The program executes as a strict sequence of supersteps (computation, communication & barrier synchronization)

The Phase Parallel Model

- Proposed by Xu & Hwang

- A parallel program is executed as a sequence of phases

- The next phase cannot begin until all operations in the current phase have finished

- There are three types of phases:

-> Parallelism phase (process management)

-> Computation phase _ Interaction phase: communication, synchronization or aggregation (e.g., reduction & scan)

- The phase parallel model is closer to covering real machine/program behavior

- All types of overheads are accounted for:

->The load imbalance overhead (the term)

->The interaction overhead (the t and terms)

->The parallelism overhead (the term)

TTTTTTTTT

DESIGN AND ANALYSIS OF PHASE- PARALLEL ALGORITHM FOR SOLVING

LINEAR SYSTEMS OF EQUATIONS ON MULTICOMPUTER PLATFORMS

- Parallelism phase which refers to the overhead

work involved in the management of the parallel processes.

- Computation phase in which the processors execute local computation operations (here, local means that the data processed resides in the local memory of the node.

- Interaction phase including communication and synchronization.

PERFORMANCE ISSUES
[image: image37.png]k Tl(i) 0
T,,=§m+T

[image: image38.png]T,

T

[image: image39.png]

[image: image40.png]

[image: image41.png]n_ ndl

=

Z{ZTk,(A /A)+2Tk,(A AA) ST AASA))

ZZTA,(AA JAMY) ZZT W

ek

Parallel Computation of Eratosthenes Prime Sieve on Clusters

- The goal of the parallel algorithm being designed is to select the prime numbers

out of a given array of integer numbers.

- The sequential algorithm, proposed by the

ancient Greek mathematician Eratosthenes, involves marking the composite numbers within the array and the unmarked numbers are the prime ones.

- This algorithm is practically inefficient because it has a complexity of (n ln ln n), where n is the number of the integers in the array.

Block data decomposition macros

#define BLOCK_LOW (id,p,n) ((id) * (n) / (p))

#define BLOCK_HIGH (id,p,n) (BLOCK_LOW)

((id)+1,p,n)– 1)

#define BLOCK_SIZE (id,p,n) (BLOCK_LOW)

((id)+1) – BLOCK_LOW (id))

#define BLOCK_OWNER (index,p,n) (((p) *

((index) + 1) – 1) / (n))

[image: image42.png]Global Inaexes
3

4 5 6

Broadcast

[image: image43.png]task 0 task 1 task 2 task 3

7 cbobueHmrero
npeau({msg)

cbobuexnvero
7 7 7 7 cnea{msg)

Function MPI_Bcast

- One process sends identical data to all other processes within the communicator

Int MPI_Bcast (

void *buffer, /*address of the 1st element*/

int count, /* /*number of elements*/

MPI_Datatype datatype /* type of the elements*/

int root, /* /* ID of the source- process*/

MPI_Comm Comm) /* /* Communicator- group*/

Function MPI_Reduce

[image: image44.png]task 0 task 1 task 2 task 3

1 2 3 4 ~=—— sendbuf (before)

10 ~—— recvhuf [after)

Enhancements

- Deleting even numbers

- Eliminating broadcast

- Reorganizing cycles

[image: image45.png]9 15 21 27 @8) 39 45 51 @@ 63 69 75 @1 87 93 99
25 35 45 55 65 75 85 95

®—
49 63 77 9N .

Memory Hierarchy Properties

_These properties set the relationship between

adjacent memory levels

_They also govern the operation of the

memory hierarchy

1. INCLUSION PROPERTY : all information objects

(words, cache lines, or pages) stored in level Mi form a

subset of those stored in level Mi+1 for all levels

Initially, the outermost level Mn contains everything

needed to execute the program. Subsequently,

subsets of Mn are copied into Mn-1, and so on, until the

required instructions & data move to the innermost

memory M1, ready for execution by the processor

_ If a piece of info is found in Mi, then copies of

the same info are found in higher levels Mi+1,

Mi+2,…, Mn

_An object stored in Mi+1 may not be found in Mi,

i.e. in the lower level

_A word miss in a given level implies miss at all

lower levels

_The highest level is the backup storage, where

everything can be found

Data transfer units – the unit of info transfer

between adjacent memory levels: memory

words between CPU registers & on-chip caches

and cache lines between internal cache &

external cache M1

2.. COHERENCE PROPERTY

_REQUIRES THAT COPIES OF THE SAME INFO

ITEMS BE CONSISTENT AT DIFFERENT

MEMORY LEVELS: if a word or a cache line is

modified in the lower level, copies of that

word or cache line must be updated

immediately at all higher memory levels

_Maintaining memory coherence among

successive levels is a nontrivial task, often

demanding extra bus cycles or prolonging

memory latency

_Two strategies for maintaining the

coherence – write-through and write-back

3.. LOCALITY OF REFERENCE

_Temporall llocalliity – recentlly refferenced

iitems are lliikelly to be refferenced agaiin iin the

near ffuture

_Spatiiall llocalliity – reffers to the tendency ffor

a sofftware process to access iinffo iitems whose

addresses are near one another

_Sequentiiall llocalliity – the ratiio off iinsequence

executiion to out-off-sequence

executiion iis roughlly 5 to 1 iin an ordiinary

program

CACHE COHERENCY PROBLECACHE COHERENCY PROBLEM

_Reffers to iinconsiistency off diistriibuted cached

copiies off the same cache lliine addressed ffrom

the shared memory

_A read ffollllowiing a wriite to X by processor P

wiillll return the vallue wriitten by P

_A read by processor P ffollllowiing a wriite to X

by processor Q wiillll return the vallue wriitten

by Q

_Wriites to the same cache lliine X by diifffferent

processors are allways seriialliized to present

the same order off memory events,, seen by allll

processors

SOURCES OF INCOHERENCSOURCES OF INCOHERENCE

1.. The write of different processors

into their cached copies of the

same cache line in memory,

asynchronously

2.. Process migration among multiple

processors without alerting each

other

3.. I/O operations bypassing the

owners of cached copies

SNOOPY COHERENCY PROTOCOLSNOOPY COHERENCY PROTOCOLS

_ Need to applly coherency controll iin wriitiing off

shared data,, process miigratiion,, and I/O

operatiions iin a mulltiiprocessor enviironment

_ Two cllasses off coherency protocolls,,

iimpllemented wiith snoopy buses,, moniitoriing

the cachiing events across the bus

1.. Wriite – iinvalliidate : iinvalliidates allll other

cached copiies when a llocall cached copy iis

updated

2.. Wriite – update : broadcasts the newlly

cached copy to update allll other cached copiies

wiith the same lliine address

THE MESI SNOOPY PROTOCOTHE MESI SNOOPY PROTOCOL

_The MESI iis a wriite-iinvalliidate snoopy protocoll

_It keeps track off the state off a cache lliine,,

consiideriing allll read or wriite,, cache hiit or cache

miiss,, and snoopy events detected on the bus

_The Pentiium MESI protocoll supports both WB

and WT cachiing events controlllled by an

externall siignall

_Every lliine iin the data cache iis allways iin one off

the ffollllowiing 4 possiiblle states: Modiiffiied (M),,

Excllusiive (E),, Shared (S),, Invalliid (I)

_Modified (M state)Modified (M state): the cache lliine has

been updated wiith a wriite hiit by the llocall

processor iin the cache

_Excllusiive (E state): The cache lliine iis

valliid,, and iit iis not valliid iin any other cache..

The memory lliine has not been updated yet

_Shared (S state): The lliine iis valliid,, but iit

may allso be valliid iin one or more remote

caches or iin the cache lliine iin memory

_Invalliid (I state): Thiis iis the iiniitiiall state

affter reset,, or the cache lliine has been

iinvalliidated by a wriite hiit by another cache

wiith the same address

MULTIPROCESSOR ARCHITECTURMULTIPROCESSOR ARCHITECTURE

Shared memory systems (SMP or CC-NUMA) have a

number of advantages:

_Symmetry: any processor can access any

memory location and any I/O device

_Single Address Space – there is only one copy

of OS, database, application, etc., residing in

shared memory

_Caching – data locality is supported by a

hierarchy of caches

_Coherency – enforced by hardware

_Memory communication – low latency, based

on simple load/store instructions and the hardware

generates coherency information

SYMMETRIC MULTIPROCESSORS

_ Most SMP’’s use a bus iinterconnect,, and

cache coherency iis enfforced through same

MESI-lliike snoopy protocolls

_ Bus-connected SMP’’s are commerciialllly

successffull

BASIC ISSUES OF SMP’’S:

1.. Avaiillabiilliity – ffaiillure off the bus,, the

memory or the OS,, wiillll break the entiire

system

2.. Bottlleneck – the memory bus & the shared

memory

3.. Latency – smallll,, compared to mulltiicomputers,,

hundreds off processor cyclles

4.. Memory & I/O bandwiidths – to iincrease them

the system bus iis repllaced wiith a crossbar

swiitch network,, connectiing allll processors to

allll memory & I/O deviices

5.. Scallabiilliity – a bus iis not scallablle & lliimiits the

off processors to tens;

Three approaches are used to scale larger systems:

_ usiing a bus/crossbar iinterconnect

_ usiing a CC-NUMA archiitecture

_ usiing cllusteriing

CC-NUMA systems

_Connect several SMP nodes into a larger system

_Employ a directory-based, cache coherent protocol

_Alleviates the scalability problem of conventional

SMP’s

_The distributed shared-memory architecture

enhances scalability; Memory capacity & I/O

capabilities can be increased by adding more nodes

_The system hardware & software automatically

distribute data among the nodes initially

_During runtime the cache coherency hardware

automatically moves the data to the nodes where

they are referenced

THE REMOTE CACHING PROBLETHE REMOTE CACHING PROBLEM

_Remote caches are so calllled because they

cache data whose home iis iin a remote

memory

_ Suppose a program has two processes P

and Q accessiing data arrays A and B:

Phase 1: P uses (A) Q uses (B)

Phase 2: P uses (B) Q uses (A)

Iff a capaciity miiss occurs,, the contents off

remote caches must be wriitten back to the

home memory iin a remote node..

_GigaplanGigaplane-XB Interconnect – based on two

levels of crossbar, 12.8 GB/s

_UPA bus - Ultra Port Architecture (UPA) standard,

an intermediate bus connecting CPU/memory

boards and I/O boards to Gigaplane bus, 128 b

per port, snoop addresses are broadcast to all the

boards, data packets are sent point-to-point

through the crossbar switch

_Global 16x16 data crossbar- routes data

packets between the 16 system boards

_Data routing at two levels – global & local

_System service processor (SSP) – booting,

shutdown, monitoring, system administration

_ Processor module contains UltraSPARC

microprocessor & 1 MB L2 cache

DIRECTORDIRECTORY-BASED COHERENCE

PROTOCOL

_The snoopy protocol

is based on the

broadcast capability on

the memory bus

_The directory

based-protocols are

not based on the

broadcast capability on

the memory bus

Cache directory

_ Records the locations and

states of all cached lines of

shared data

_ Pointers to all remote copies

of all cached lines of the same

line

_ A dirty bit – if a unique cache

can write to the line

_ Central directory – for cache

coherency control in a smallscale

SMP with centralized

shared memory

DISTRIBUTED DIRECTORIEDISTRIBUTED DIRECTORIES

each memory modulle maiintaiins a

separate diirectory

TYPES OF DIRECTORY PROTOCOLS

_ A ffullll-map cache diirectory

1.. contaiins iinffo off allll cache lliines shared on a

glloball basiis; each diirectory entry contaiins N

poiinters,, N-number off processors

2.. A ffullll diirectory repeats iin every node,,

occupyiing a llot off memory

3.. Suiitablle onlly ffor smallll-scalle mulltiiprocessor

_ A limited cache directorA limited cache directory

1.. Uses a reduced ffiixed # off poiinters per

diirectory entry,, no matter off the system siize

2.. Cache diirectoriies occupy lless memory

3.. May sllow down the cache/memory update

_ Chaiined cache diirectoriies

1.. They emullate the ffullll-map scheme by

diistriibutiing the diirectory iinffo to smallll llocall

diirectoriies

2.. A search through the lliinked lliist off cache

diirectoriies iis necessary -IEEE SCI Standard

speciiffiies the structure off chaiined protocoll

SCI Scallablle cache coherence protocoll

Stanford DashStanford Dash:

a CC-NUMA multiprocessor project

_ Memory sharing – at cache line level

_ Write-invalidation coherency protocol using

distributed cache directories

_ A cache line in memory or a cached copy in local

caches may be in one of 3 states:

1. Uncached – not cached in any node cluster

2. Shared – unmodified states in the caches of 1 or

more node clusters

3. Dirty – modified in a single cache of some node

cluster

_ Directory - keeps summary info for each cache line

(its state and the nodes clusters that are caching it
